論文の概要: DKT-STDRL: Spatial and Temporal Representation Learning Enhanced Deep
Knowledge Tracing for Learning Performance Prediction
- arxiv url: http://arxiv.org/abs/2302.11569v1
- Date: Wed, 15 Feb 2023 09:23:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 13:23:53.407248
- Title: DKT-STDRL: Spatial and Temporal Representation Learning Enhanced Deep
Knowledge Tracing for Learning Performance Prediction
- Title(参考訳): DKT-STDRL:学習性能予測のための空間的・時間的表現学習
- Authors: Liting Lyu, Zhifeng Wang, Haihong Yun, Zexue Yang, Ya Li
- Abstract要約: DKT-STDRLモデルは、学生の運動シーケンスの空間的特徴情報を抽出するためにCNNを使用する。
BiLSTM部は、共同学習特徴から時間的特徴を抽出し、次のステップで学生が正しく答えるかどうかの予測情報を得る。
ASSISTment2009, ASSISTment2015, Synthetic-5, ASSISTchall, Statics 2011 の公開教育データセットの実験は、DKT-STDRLがDKTやCKTよりも優れた予測効果を達成できることを証明している。
- 参考スコア(独自算出の注目度): 11.75131482747055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge tracing (KT) serves as a primary part of intelligent education
systems. Most current KTs either rely on expert judgments or only exploit a
single network structure, which affects the full expression of learning
features. To adequately mine features of students' learning process, Deep
Knowledge Tracing Based on Spatial and Temporal Deep Representation Learning
for Learning Performance Prediction (DKT-STDRL) is proposed in this paper.
DKT-STDRL extracts spatial features from students' learning history sequence,
and then further extracts temporal features to extract deeper hidden
information. Specifically, firstly, the DKT-STDRL model uses CNN to extract the
spatial feature information of students' exercise sequences. Then, the spatial
features are connected with the original students' exercise features as joint
learning features. Then, the joint features are input into the BiLSTM part.
Finally, the BiLSTM part extracts the temporal features from the joint learning
features to obtain the prediction information of whether the students answer
correctly at the next time step. Experiments on the public education datasets
ASSISTment2009, ASSISTment2015, Synthetic-5, ASSISTchall, and Statics2011 prove
that DKT-STDRL can achieve better prediction effects than DKT and CKT.
- Abstract(参考訳): 知識追跡(KT)は知的教育システムの主要な部分である。
現在のktの多くは、専門家の判断に頼るか、学習機能の完全な表現に影響を与える単一のネットワーク構造のみを利用する。
本稿では,学生の学習過程の特徴を適切に掘り下げるために,空間的および時間的深層表現による学習性能予測学習(DKT-STDRL)を提案する。
dkt-stdrlは,学生の学習履歴列から空間的特徴を抽出し,さらに時間的特徴を抽出して深い隠れ情報を抽出する。
具体的には、まずDKT-STDRLモデルを用いて、学生の運動シーケンスの空間的特徴情報を抽出する。
そして, 空間的特徴を, 共同学習機能として, 元の学生の運動特徴に関連付ける。
そして、その関節特徴をBiLSTM部に入力する。
そして、BiLSTM部は、共同学習特徴から時間的特徴を抽出し、次のステップで学生が正しく答えるかどうかの予測情報を得る。
ASSISTment2009, ASSISTment2015, Synthetic-5, ASSISTchall, Statics 2011 の公開教育データセットの実験では、DKT-STDRL が DKT や CKT よりも優れた予測効果を達成できることが示された。
関連論文リスト
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Integrating LSTM and BERT for Long-Sequence Data Analysis in Intelligent Tutoring Systems [4.359769884713738]
長周期データ処理,すなわちLBKTのためのLSTM BERTに基づく知識追跡モデルを提案する。
その結果、LBKTはより高速で解釈可能であり、従来のディープラーニングベースの知識追跡手法よりもメモリコストが低いことが示唆された。
論文 参考訳(メタデータ) (2024-04-24T18:19:44Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
CTR(Click-Through Rate)予測は、製品とコンテンツの推奨において重要なタスクである。
本稿では,CTR予測のための動的埋め込み学習を実現するモデルを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:34:45Z) - HiTSKT: A Hierarchical Transformer Model for Session-Aware Knowledge
Tracing [35.02243127325724]
知識追跡(KT)は、学生の学習履歴を活用して、事前に定義された一連のスキルに基づいて熟達レベルを推定することを目的としており、それに対応する将来のパフォーマンスを正確に予測できる。
実際には、学生の学習履歴は、単に独立した回答の列であるのではなく、セッションとして知られる、大量の質問の集合に対する回答を含んでいる。
既存のKTモデルは、学生の知識状態のセッションシフトを捉えずに、学生の学習記録を単一の継続シーケンスとして扱う。
論文 参考訳(メタデータ) (2022-12-23T04:22:42Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - LANA: Towards Personalized Deep Knowledge Tracing Through
Distinguishable Interactive Sequences [21.67751919579854]
今後の質問に対する学生の回答を予測するために、Leveled Attentive KNowledge TrAcing(LANA)を提案します。
新しい学生関連特徴抽出装置(SRFE)を使用して、学生固有の特性をそれぞれのインタラクティブシーケンスから蒸留します。
ピボットモジュールは、個々の学生のためのデコーダを再構築し、グループのためのレベル付き学習特化エンコーダにより、パーソナライズされたDKTを実現した。
論文 参考訳(メタデータ) (2021-04-21T02:57:42Z) - BKT-LSTM: Efficient Student Modeling for knowledge tracing and student
performance prediction [0.24366811507669117]
BKT-LSTMと呼ばれる効率的な学生モデルを提案する。
bktによって評価された個々のtextitskill mastery、k-meansクラスタリングとtextitproblemの難易度によって検出されるtextitability profile(スキル間の学習転送)である。
論文 参考訳(メタデータ) (2020-12-22T18:05:36Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは、マルチリニア圧縮センシングと機械学習をエンドツーエンドシステムに統合する。
MCLの背後にある主要なアイデアは、下流学習タスクの信号から重要な特徴を捉えることのできるテンソル部分空間の存在を仮定することである。
本稿では、上記の要件、すなわち、関心の信号が分離可能なテンソル部分空間をどうやって見つけるかという、2つの要件に対処する新しい解決策を提案する。
論文 参考訳(メタデータ) (2020-02-17T19:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。