On the contribution of pre-trained models to accuracy and utility in
modeling distributed energy resources
- URL: http://arxiv.org/abs/2302.11679v1
- Date: Wed, 22 Feb 2023 22:29:40 GMT
- Title: On the contribution of pre-trained models to accuracy and utility in
modeling distributed energy resources
- Authors: Hussain Kazmi and Pierre Pinson
- Abstract summary: We evaluate the improvement in predictive accuracy due to pre-trained models, both with and without fine-tuning.
We consider the question of fairness: do pre-trained models create equal improvements for heterogeneous agents, and how does this translate to downstream utility?
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their growing popularity, data-driven models of real-world dynamical
systems require lots of data. However, due to sensing limitations as well as
privacy concerns, this data is not always available, especially in domains such
as energy. Pre-trained models using data gathered in similar contexts have
shown enormous potential in addressing these concerns: they can improve
predictive accuracy at a much lower observational data expense. Theoretically,
due to the risk posed by negative transfer, this improvement is however neither
uniform for all agents nor is it guaranteed. In this paper, using data from
several distributed energy resources, we investigate and report preliminary
findings on several key questions in this regard. First, we evaluate the
improvement in predictive accuracy due to pre-trained models, both with and
without fine-tuning. Subsequently, we consider the question of fairness: do
pre-trained models create equal improvements for heterogeneous agents, and how
does this translate to downstream utility? Answering these questions can help
enable improvements in the creation, fine-tuning, and adoption of such
pre-trained models.
Related papers
- Ask Your Distribution Shift if Pre-Training is Right for You [74.18516460467019]
In practice, fine-tuning a pre-trained model improves robustness significantly in some cases but not at all in others.
We focus on two possible failure modes of models under distribution shift: poor extrapolation and biases in the training data.
Our study suggests that, as a rule of thumb, pre-training can help mitigate poor extrapolation but not dataset biases.
arXiv Detail & Related papers (2024-02-29T23:46:28Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Is Self-Supervised Pretraining Good for Extrapolation in Molecular
Property Prediction? [16.211138511816642]
In material science, the prediction of unobserved values, commonly referred to as extrapolation, is critical for property prediction.
We propose an experimental framework for the demonstration and empirically reveal that while models were unable to accurately extrapolate absolute property values, self-supervised pretraining enables them to learn relative tendencies of unobserved property values.
arXiv Detail & Related papers (2023-08-16T03:38:43Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Overwriting Pretrained Bias with Finetuning Data [36.050345384273655]
We investigate bias when conceptualized as both spurious correlations between the target task and a sensitive attribute as well as underrepresentation of a particular group in the dataset.
We find that models finetuned on top of pretrained models can indeed inherit their biases, but (2) this bias can be corrected for through relatively minor interventions to the finetuning dataset.
Our findings imply that careful curation of the finetuning dataset is important for reducing biases on a downstream task, and doing so can even compensate for bias in the pretrained model.
arXiv Detail & Related papers (2023-03-10T19:10:58Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
We propose metrics for general regression tasks using the Shifts Weather Prediction dataset.
We also present an evaluation of the baseline methods using these metrics.
arXiv Detail & Related papers (2021-11-08T17:32:10Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
Models that are more accurate on the out-of-distribution data relative to this baseline exhibit "effective robustness"
We find that models pre-trained on larger datasets exhibit effective robustness during training that vanishes at convergence.
We discuss several strategies for scaling effective robustness to the high-accuracy regime to improve the out-of-distribution accuracy of state-of-the-art models.
arXiv Detail & Related papers (2021-06-30T06:21:42Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Robust Data-Driven Error Compensation for a Battery Model [0.0]
Today's massively collected battery data is not yet used for more accurate and reliable simulations.
A data-driven error model is introduced enhancing an existing physically motivated model.
A neural network compensates the existing dynamic error and is further limited based on a description of the underlying data.
arXiv Detail & Related papers (2020-12-31T16:11:36Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.