On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
- URL: http://arxiv.org/abs/2503.19719v1
- Date: Tue, 25 Mar 2025 14:45:23 GMT
- Title: On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
- Authors: Francisco Mena, Diego Arenas, Miro Miranda, Andreas Dengel,
- Abstract summary: We evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available.<n>Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complement among data sources, and the model design.
- Score: 4.388282062290401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
Related papers
- The Data Addition Dilemma [4.869513274920574]
In many machine learning for healthcare tasks, standard datasets are constructed by amassing data across many, often fundamentally dissimilar, sources.
But when does adding more data help, and when does it hinder progress on desired model outcomes in real-world settings?
We identify this situation as the textitData Addition Dilemma, demonstrating that adding training data in this multi-source scaling context can at times result in reduced overall accuracy, uncertain fairness outcomes, and reduced worst-subgroup performance.
arXiv Detail & Related papers (2024-08-08T01:42:31Z) - Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - Impact Assessment of Missing Data in Model Predictions for Earth Observation Applications [4.388282062290401]
We assess the impact of missing temporal and static EO sources in trained models across four datasets with classification and regression tasks.
We find that some methods are naturally more robust to missing data.
The optical view is the most critical view when it is missing individually.
arXiv Detail & Related papers (2024-03-21T11:03:56Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Think Twice: Measuring the Efficiency of Eliminating Prediction
Shortcuts of Question Answering Models [3.9052860539161918]
We propose a simple method for measuring a scale of models' reliance on any identified spurious feature.
We assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA)
We find that while existing debiasing methods can mitigate reliance on a chosen spurious feature, the OOD performance gains of these methods can not be explained by mitigated reliance on biased features.
arXiv Detail & Related papers (2023-05-11T14:35:00Z) - On the contribution of pre-trained models to accuracy and utility in
modeling distributed energy resources [0.0]
We evaluate the improvement in predictive accuracy due to pre-trained models, both with and without fine-tuning.
We consider the question of fairness: do pre-trained models create equal improvements for heterogeneous agents, and how does this translate to downstream utility?
arXiv Detail & Related papers (2023-02-22T22:29:40Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Training Neural Networks on Data Sources with Unknown Reliability [45.903073137443116]
In supervised learning, we aim to train neural networks on each data source for a number of steps proportional to the source's estimated reliability.<n>This way, we allow training on all sources during the warm-up and reduce learning on less reliable sources during the final training stages.<n>We show through diverse experiments that this can significantly improve model performance when trained on mixtures of reliable and unreliable data sources.
arXiv Detail & Related papers (2022-12-06T11:38:22Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
Models that are more accurate on the out-of-distribution data relative to this baseline exhibit "effective robustness"
We find that models pre-trained on larger datasets exhibit effective robustness during training that vanishes at convergence.
We discuss several strategies for scaling effective robustness to the high-accuracy regime to improve the out-of-distribution accuracy of state-of-the-art models.
arXiv Detail & Related papers (2021-06-30T06:21:42Z) - Hidden Biases in Unreliable News Detection Datasets [60.71991809782698]
We show that selection bias during data collection leads to undesired artifacts in the datasets.
We observed a significant drop (>10%) in accuracy for all models tested in a clean split with no train/test source overlap.
We suggest future dataset creation include a simple model as a difficulty/bias probe and future model development use a clean non-overlapping site and date split.
arXiv Detail & Related papers (2021-04-20T17:16:41Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.