A2S-NAS: Asymmetric Spectral-Spatial Neural Architecture Search For
Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2302.11868v1
- Date: Thu, 23 Feb 2023 09:15:14 GMT
- Title: A2S-NAS: Asymmetric Spectral-Spatial Neural Architecture Search For
Hyperspectral Image Classification
- Authors: Lin Zhan, Jiayuan Fan, Peng Ye, Jianjian Cao
- Abstract summary: We propose a multi-stage search architecture to overcome asymmetric spectral-spatial dimensions and capture significant features.
First, the asymmetric pooling on the spectral-spatial dimension maximally retains the essential features of HSI.
Then, the 3D convolution with a selectable range of receptive fields overcomes the constraints of fixed-sized convolution kernels.
- Score: 5.0789200970424035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep learning-based hyperspectral image (HSI) classification works
still suffer from the limitation of the fixed-sized receptive field, leading to
difficulties in distinctive spectral-spatial features for ground objects with
various sizes and arbitrary shapes. Meanwhile, plenty of previous works ignore
asymmetric spectral-spatial dimensions in HSI. To address the above issues, we
propose a multi-stage search architecture in order to overcome asymmetric
spectral-spatial dimensions and capture significant features. First, the
asymmetric pooling on the spectral-spatial dimension maximally retains the
essential features of HSI. Then, the 3D convolution with a selectable range of
receptive fields overcomes the constraints of fixed-sized convolution kernels.
Finally, we extend these two searchable operations to different layers of each
stage to build the final architecture. Extensive experiments are conducted on
two challenging HSI benchmarks including Indian Pines and Houston University,
and results demonstrate the effectiveness of the proposed method with superior
performance compared with the related works.
Related papers
- HTD-Mamba: Efficient Hyperspectral Target Detection with Pyramid State Space Model [5.505983410956103]
Hyperspectral target detection (HTD) identifies objects of interest from complex backgrounds at the pixel level.
This paper proposes an efficient self-supervised HTD method with a pyramid state space model (SSM), named HTD-Mamba.
Experiments conducted on four public datasets demonstrate that the proposed method outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2024-07-09T13:21:26Z) - 3DSS-Mamba: 3D-Spectral-Spatial Mamba for Hyperspectral Image Classification [14.341510793163138]
We propose a novel 3D-Spectral-Spatial Mamba framework for HSI classification.
A 3D-Spectral-Spatial Selective Scanning mechanism is introduced, which performs pixel-wise selective scanning on 3D hyperspectral tokens.
Experimental results and analysis demonstrate that the proposed method outperforms the state-of-the-art methods on HSI classification benchmarks.
arXiv Detail & Related papers (2024-05-21T04:10:26Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
We rectify 3D convolution by modifying its topology to enhance the rank upper-bound.
We also propose a novel diversity-aware regularization (DA-Reg) term that acts on the feature maps to maximize independence among elements.
To demonstrate the superiority of the proposed Re$3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks.
arXiv Detail & Related papers (2023-01-15T16:19:18Z) - Hyperspectral Images Classification and Dimensionality Reduction using
spectral interaction and SVM classifier [0.0]
The high dimensionality of the hyperspectral images (HSI) is one of the main challenges for the analysis of the collected data.
The existence of noisy, redundant and irrelevant bands increases the computational complexity.
We propose a novel filter approach based on the spectral interaction measure and the support vector machines for dimensionality reduction.
arXiv Detail & Related papers (2022-10-27T15:37:57Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - 3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral
Image Classification [5.727964191623458]
Hyperspectral images involve abundant spectral and spatial information, playing an irreplaceable role in land-cover classification.
Recently, based on deep learning technologies, an increasing number of HSI classification approaches have been proposed, which demonstrate promising performance.
Previous studies suffer from two major drawbacks: 1) the architecture of most deep learning models is manually designed, relies on specialized knowledge, and is relatively tedious.
arXiv Detail & Related papers (2021-01-12T04:15:40Z) - Spectral Pyramid Graph Attention Network for Hyperspectral Image
Classification [5.572542792318872]
Convolutional neural networks (CNN) have made significant advances in hyperspectral image (HSI) classification.
Standard convolutional kernel neglects intrinsic connections between data points, resulting in poor region delineation and small spurious predictions.
This paper presents a novel architecture which explicitly addresses these two issues.
arXiv Detail & Related papers (2020-01-20T13:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.