論文の概要: PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2302.11919v2
- Date: Tue, 27 Feb 2024 09:47:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 00:52:07.264503
- Title: PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles
- Title(参考訳): PEM: 自動運転車の仮想テストにおける知覚誤差モデル
- Authors: Andrea Piazzoni, Jim Cherian, Justin Dauwels, Lap-Pui Chau
- Abstract要約: この記事では、知覚エラーモデル(PEM)を定義します。
PEMは仮想シミュレーションコンポーネントであり、知覚誤差がAV安全性に与える影響を分析することができる。
我々は、カメラ、LiDAR、カメラ-LiDARのセットアップを評価することにより、PEMベースの仮想テストの有用性を実証する。
- 参考スコア(独自算出の注目度): 20.300846259643137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though virtual testing of Autonomous Vehicles (AVs) has been well
recognized as essential for safety assessment, AV simulators are still
undergoing active development. One particularly challenging question is to
effectively include the Sensing and Perception (S&P) subsystem into the
simulation loop. In this article, we define Perception Error Models (PEM), a
virtual simulation component that can enable the analysis of the impact of
perception errors on AV safety, without the need to model the sensors
themselves. We propose a generalized data-driven procedure towards parametric
modeling and evaluate it using Apollo, an open-source driving software, and
nuScenes, a public AV dataset. Additionally, we implement PEMs in SVL, an
open-source vehicle simulator. Furthermore, we demonstrate the usefulness of
PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups.
Our virtual tests highlight limitations in the current evaluation metrics, and
the proposed approach can help study the impact of perception errors on AV
safety.
- Abstract(参考訳): 自律走行車(AV)のバーチャルテストは安全性評価に不可欠と認識されているものの、AVシミュレータはまだ活発な開発が続けられている。
特に難しい問題のひとつは、S&P(Sensing and Perception)サブシステムをシミュレーションループに効果的に組み込むことである。
本稿では,知覚誤差がAV安全性に与える影響を,センサ自体をモデル化することなく解析できる仮想シミュレーションコンポーネントである知覚誤りモデル(PEM)を定義する。
本稿では,パラメトリックモデリングのための汎用的なデータ駆動手法を提案し,それをオープンソース駆動ソフトウェアであるapolloと,パブリックavデータセットであるnuscenesを用いて評価する。
さらに,オープンソースの車両シミュレータSVLにPEMを実装した。
さらに、カメラ、LiDAR、カメラ-LiDARのセットアップを評価することにより、PEMベースの仮想テストの有用性を示す。
仮想テストでは,現状の評価基準の限界が強調され,提案手法はavの安全性に対する知覚誤差の影響を検証できる。
関連論文リスト
- DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
センサ搭載車両によって記録された1つのログをキャプチャする、ニューラルネットワークシミュレータUniSimを提示する。
UniSimは、静的バックグラウンドと動的アクターの両方を再構築するために、ニューラルネットワーク機能グリッドを構築する。
動的オブジェクトの学習可能な事前情報を組み込んで、畳み込みネットワークを利用して未確認領域を完成させる。
論文 参考訳(メタデータ) (2023-08-03T17:56:06Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - A Multi-Layered Approach for Measuring the Simulation-to-Reality Gap of
Radar Perception for Autonomous Driving [0.0]
仮想テストに頼るためには、採用されているセンサーモデルを検証する必要がある。
レーダ知覚のこのシミュレーションと現実のギャップを測定するための音響手法は存在しない。
提案手法の有効性を,詳細なセンサモデルによる評価により検証した。
論文 参考訳(メタデータ) (2021-06-15T18:51:39Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Reliability Analysis of Artificial Intelligence Systems Using Recurrent
Events Data from Autonomous Vehicles [2.7515565752659645]
我々は、自動運転車におけるAIシステムの信頼性の表現として、リカレントな切り離しイベントを使用している。
イベント・プロセスを記述するために,モノトニック・スプラインに基づく新しい非パラメトリック・モデルを提案する。
論文 参考訳(メタデータ) (2021-02-02T20:25:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - A Sensitivity Analysis Approach for Evaluating a Radar Simulation for
Virtual Testing of Autonomous Driving Functions [0.0]
レーダシミュレーションの開発と評価のための感度解析手法を提案する。
モジュラーレーダシステムのシミュレーションを提示・パラメータ化して感度解析を行う。
レーダモデルの出力と実走行の測定値を比較して,現実的なモデルの挙動を確かめる。
論文 参考訳(メタデータ) (2020-08-06T15:51:52Z) - Building Trust in Autonomous Vehicles: Role of Virtual Reality Driving
Simulators in HMI Design [8.39368916644651]
本研究では,生理的信号から収集した連続的客観的情報に基づいて,AVのユーザエクスペリエンスを検証する手法を提案する。
本手法を車両の感覚・計画システムに関する視覚的手がかりを提供するヘッドアップディスプレイインタフェースの設計に適用した。
論文 参考訳(メタデータ) (2020-07-27T08:42:07Z) - Search-based Test-Case Generation by Monitoring Responsibility Safety
Rules [2.1270496914042996]
本研究では,シミュレーションに基づく運転テストデータのスクリーニングと分類を行う手法を提案する。
本フレームワークは,S-TALIROおよびSim-ATAVツールとともに配布されている。
論文 参考訳(メタデータ) (2020-04-25T10:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。