Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches
- URL: http://arxiv.org/abs/2302.11966v2
- Date: Tue, 22 Aug 2023 09:45:11 GMT
- Title: Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches
- Authors: Alexandros Palaios, Christian L. Vielhaus, Daniel F. K\"ulzer, Cara
Watermann, Rodrigo Hernangomez, Sanket Partani, Philipp Geuer, Anton Krause,
Raja Sattiraju, Martin Kasparick, Gerhard Fettweis, Frank H. P. Fitzek, Hans
D. Schotten, and Slawomir Stanczak
- Abstract summary: We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
- Score: 46.52224306624461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As cellular networks evolve towards the 6th generation, machine learning is
seen as a key enabling technology to improve the capabilities of the network.
Machine learning provides a methodology for predictive systems, which can make
networks become proactive. This proactive behavior of the network can be
leveraged to sustain, for example, a specific quality of service requirement.
With predictive quality of service, a wide variety of new use cases, both
safety- and entertainment-related, are emerging, especially in the automotive
sector. Therefore, in this work, we consider maximum throughput prediction
enhancing, for example, streaming or high-definition mapping applications. We
discuss the entire machine learning workflow highlighting less regarded aspects
such as the detailed sampling procedures, the in-depth analysis of the dataset
characteristics, the effects of splits in the provided results, and the data
availability. Reliable machine learning models need to face a lot of challenges
during their lifecycle. We highlight how confidence can be built on machine
learning technologies by better understanding the underlying characteristics of
the collected data. We discuss feature engineering and the effects of different
splits for the training processes, showcasing that random splits might
overestimate performance by more than twofold. Moreover, we investigate diverse
sets of input features, where network information proved to be most effective,
cutting the error by half. Part of our contribution is the validation of
multiple machine learning models within diverse scenarios. We also use
explainable AI to show that machine learning can learn underlying principles of
wireless networks without being explicitly programmed. Our data is collected
from a deployed network that was under full control of the measurement team and
covered different vehicular scenarios and radio environments.
Related papers
- Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - Deep Feature Learning for Wireless Spectrum Data [0.5809784853115825]
We propose an approach to learning feature representations for wireless transmission clustering in a completely unsupervised manner.
We show that the automatic representation learning is able to extract fine-grained clusters containing the shapes of the wireless transmission bursts.
arXiv Detail & Related papers (2023-08-07T12:27:19Z) - Automating In-Network Machine Learning [2.857025628729502]
Planter is an open-source framework for mapping trained machine learning models to programmable devices.
We show that Planter-based in-network machine learning algorithms can run at line rate, have a negligible effect on latency, coexist with standard switching functionality, and have no or minor accuracy trade-offs.
arXiv Detail & Related papers (2022-05-18T09:42:22Z) - High Efficiency Pedestrian Crossing Prediction [0.0]
State-of-the-art methods in predicting pedestrian crossing intention often rely on multiple streams of information as inputs.
We introduce a network with only frames of pedestrians as the input.
Experiments validate that our model consistently delivers outstanding performances.
arXiv Detail & Related papers (2022-04-04T21:37:57Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
Industrial Internet of Things (IIoT) revolutionizes the future manufacturing facilities by integrating the Internet of Things technologies into industrial settings.
With the deployment of massive IIoT devices, it is difficult for the wireless network to support the ubiquitous connections with diverse quality-of-service (QoS) requirements.
We first summarize the requirements of the typical massive non-critical and critical IIoT use cases. We then identify unique characteristics in the massive IIoT scenario, and the corresponding machine learning solutions with its limitations and potential research directions.
arXiv Detail & Related papers (2021-03-10T20:10:53Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.