A Comprehensive Review on Understanding the Decentralized and Collaborative Approach in Machine Learning
- URL: http://arxiv.org/abs/2503.09833v1
- Date: Wed, 12 Mar 2025 20:54:22 GMT
- Title: A Comprehensive Review on Understanding the Decentralized and Collaborative Approach in Machine Learning
- Authors: Sarwar Saif, Md Jahirul Islam, Md. Zihad Bin Jahangir, Parag Biswas, Abdur Rashid, MD Abdullah Al Nasim, Kishor Datta Gupta,
- Abstract summary: The arrival of Machine Learning (ML) completely changed how we can unlock valuable information from data.<n>Traditional methods, where everything was stored in one place, had big problems with keeping information private, handling large amounts of data, and avoiding unfair advantages.<n>We looked at decentralized Machine Learning and its benefits, like keeping data private, getting answers faster, and using a wider variety of data sources.<n>Real-world examples from healthcare and finance were used to show how collaborative Machine Learning can solve important problems while still protecting information security.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The arrival of Machine Learning (ML) completely changed how we can unlock valuable information from data. Traditional methods, where everything was stored in one place, had big problems with keeping information private, handling large amounts of data, and avoiding unfair advantages. Machine Learning has become a powerful tool that uses Artificial Intelligence (AI) to overcome these challenges. We started by learning the basics of Machine Learning, including the different types like supervised, unsupervised, and reinforcement learning. We also explored the important steps involved, such as preparing the data, choosing the right model, training it, and then checking its performance. Next, we examined some key challenges in Machine Learning, such as models learning too much from specific examples (overfitting), not learning enough (underfitting), and reflecting biases in the data used. Moving beyond centralized systems, we looked at decentralized Machine Learning and its benefits, like keeping data private, getting answers faster, and using a wider variety of data sources. We then focused on a specific type called federated learning, where models are trained without directly sharing sensitive information. Real-world examples from healthcare and finance were used to show how collaborative Machine Learning can solve important problems while still protecting information security. Finally, we discussed challenges like communication efficiency, dealing with different types of data, and security. We also explored using a Zero Trust framework, which provides an extra layer of protection for collaborative Machine Learning systems. This approach is paving the way for a bright future for this groundbreaking technology.
Related papers
- A Unified Framework for Continual Learning and Unlearning [9.538733681436836]
Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately.<n>We introduce a new framework that jointly tackles both tasks by leveraging controlled knowledge distillation.<n>Our approach enables efficient learning with minimal forgetting and effective targeted unlearning.
arXiv Detail & Related papers (2024-08-21T06:49:59Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Update Selective Parameters: Federated Machine Unlearning Based on Model Explanation [46.86767774669831]
We propose a more effective and efficient federated unlearning scheme based on the concept of model explanation.
We select the most influential channels within an already-trained model for the data that need to be unlearned.
arXiv Detail & Related papers (2024-06-18T11:43:20Z) - Machine Unlearning: A Comprehensive Survey [14.235752586133158]
This survey aims to systematically classify a wide range of machine unlearning.
We categorize current unlearning methods into four scenarios: centralized unlearning, distributed and irregular data unlearning, unlearning verification, and privacy and security issues in unlearning.
arXiv Detail & Related papers (2024-05-13T00:58:34Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Open Environment Machine Learning [84.90891046882213]
Conventional machine learning studies assume close world scenarios where important factors of the learning process hold invariant.
This article briefly introduces some advances in this line of research, focusing on techniques concerning emerging new classes, decremental/incremental features, changing data distributions, varied learning objectives, and discusses some theoretical issues.
arXiv Detail & Related papers (2022-06-01T11:57:56Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.