Robust Representation Learning by Clustering with Bisimulation Metrics
for Visual Reinforcement Learning with Distractions
- URL: http://arxiv.org/abs/2302.12003v1
- Date: Sun, 12 Feb 2023 13:27:34 GMT
- Title: Robust Representation Learning by Clustering with Bisimulation Metrics
for Visual Reinforcement Learning with Distractions
- Authors: Qiyuan Liu, Qi Zhou, Rui Yang, Jie Wang
- Abstract summary: Clustering with Bisimulation Metrics (CBM) learns robust representations by grouping visual observations in the latent space.
CBM alternates between two steps: (1) grouping observations by measuring their bisimulation distances to the learned prototypes; (2) learning a set of prototypes according to the current cluster assignments.
Experiments demonstrate that CBM significantly improves the sample efficiency of popular visual RL algorithms.
- Score: 9.088460902782547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown that representation learning plays a critical role in
sample-efficient reinforcement learning (RL) from pixels. Unfortunately, in
real-world scenarios, representation learning is usually fragile to
task-irrelevant distractions such as variations in background or viewpoint.To
tackle this problem, we propose a novel clustering-based approach, namely
Clustering with Bisimulation Metrics (CBM), which learns robust representations
by grouping visual observations in the latent space. Specifically, CBM
alternates between two steps: (1) grouping observations by measuring their
bisimulation distances to the learned prototypes; (2) learning a set of
prototypes according to the current cluster assignments. Computing cluster
assignments with bisimulation metrics enables CBM to capture task-relevant
information, as bisimulation metrics quantify the behavioral similarity between
observations. Moreover, CBM encourages the consistency of representations
within each group, which facilitates filtering out task-irrelevant information
and thus induces robust representations against distractions. An appealing
feature is that CBM can achieve sample-efficient representation learning even
if multiple distractions exist simultaneously.Experiments demonstrate that CBM
significantly improves the sample efficiency of popular visual RL algorithms
and achieves state-of-the-art performance on both multiple and single
distraction settings. The code is available at
https://github.com/MIRALab-USTC/RL-CBM.
Related papers
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data.
This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks.
arXiv Detail & Related papers (2023-08-22T13:55:57Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
Cluster discrimination is an effective pretext task for unsupervised representation learning.
We propose a novel clustering-based pretext task with online textbfConstrained textbfK-mtextbfeans (textbfCoKe)
Our online assignment method has a theoretical guarantee to approach the global optimum.
arXiv Detail & Related papers (2021-05-24T20:38:32Z) - Information Maximization Clustering via Multi-View Self-Labelling [9.947717243638289]
We propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations.
This is achieved by integrating a discrete representation into the self-supervised paradigm through a net.
Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively.
arXiv Detail & Related papers (2021-03-12T16:04:41Z) - Memory-Augmented Relation Network for Few-Shot Learning [114.47866281436829]
In this work, we investigate a new metric-learning method, Memory-Augmented Relation Network (MRN)
In MRN, we choose the samples that are visually similar from the working context, and perform weighted information propagation to attentively aggregate helpful information from chosen ones to enhance its representation.
We empirically demonstrate that MRN yields significant improvement over its ancestor and achieves competitive or even better performance when compared with other few-shot learning approaches.
arXiv Detail & Related papers (2020-05-09T10:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.