Federated Nearest Neighbor Machine Translation
- URL: http://arxiv.org/abs/2302.12211v1
- Date: Thu, 23 Feb 2023 18:04:07 GMT
- Title: Federated Nearest Neighbor Machine Translation
- Authors: Yichao Du, Zhirui Zhang, Bingzhe Wu, Lemao Liu, Tong Xu and Enhong
Chen
- Abstract summary: In this paper, we propose a novel federated nearest neighbor (FedNN) machine translation framework.
FedNN leverages one-round memorization-based interaction to share knowledge across different clients.
Experiments show that FedNN significantly reduces computational and communication costs compared with FedAvg.
- Score: 66.8765098651988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To protect user privacy and meet legal regulations, federated learning (FL)
is attracting significant attention. Training neural machine translation (NMT)
models with traditional FL algorithm (e.g., FedAvg) typically relies on
multi-round model-based interactions. However, it is impractical and
inefficient for machine translation tasks due to the vast communication
overheads and heavy synchronization. In this paper, we propose a novel
federated nearest neighbor (FedNN) machine translation framework that, instead
of multi-round model-based interactions, leverages one-round memorization-based
interaction to share knowledge across different clients to build low-overhead
privacy-preserving systems. The whole approach equips the public NMT model
trained on large-scale accessible data with a $k$-nearest-neighbor ($$kNN)
classifier and integrates the external datastore constructed by private text
data in all clients to form the final FL model. A two-phase datastore
encryption strategy is introduced to achieve privacy-preserving during this
process. Extensive experiments show that FedNN significantly reduces
computational and communication costs compared with FedAvg, while maintaining
promising performance in different FL settings.
Related papers
- Enhancing Security and Privacy in Federated Learning using Update Digests and Voting-Based Defense [23.280147155814955]
Federated Learning (FL) is a promising privacy-preserving machine learning paradigm.
Despite its potential, FL faces challenges related to the trustworthiness of both clients and servers.
We introduce a novel framework named underlinetextbfFederated underlinetextbfLearning with underlinetextbfUpdate underlinetextbfDigest (FLUD)
FLUD addresses the critical issues of privacy preservation and resistance to Byzantine attacks within distributed learning environments.
arXiv Detail & Related papers (2024-05-29T06:46:10Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated learning (FL) is a distributed machine learning framework where multiple clients collaborate to train a model without exposing their private data.
FL algorithms frequently employ a differential privacy mechanism that introduces noise into each client's model updates before sharing.
We show that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget.
arXiv Detail & Related papers (2023-04-11T10:42:11Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.