A Targeted Accuracy Diagnostic for Variational Approximations
- URL: http://arxiv.org/abs/2302.12419v1
- Date: Fri, 24 Feb 2023 02:50:18 GMT
- Title: A Targeted Accuracy Diagnostic for Variational Approximations
- Authors: Yu Wang, Miko{\l}aj Kasprzak, Jonathan H. Huggins
- Abstract summary: Variational Inference (VI) is an attractive alternative to Markov Chain Monte Carlo (MCMC)
Existing methods characterize the quality of the whole variational distribution.
We propose the TArgeted Diagnostic for Distribution Approximation Accuracy (TADDAA)
- Score: 8.969208467611896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Inference (VI) is an attractive alternative to Markov Chain Monte
Carlo (MCMC) due to its computational efficiency in the case of large datasets
and/or complex models with high-dimensional parameters. However, evaluating the
accuracy of variational approximations remains a challenge. Existing methods
characterize the quality of the whole variational distribution, which is almost
always poor in realistic applications, even if specific posterior functionals
such as the component-wise means or variances are accurate. Hence, these
diagnostics are of practical value only in limited circumstances. To address
this issue, we propose the TArgeted Diagnostic for Distribution Approximation
Accuracy (TADDAA), which uses many short parallel MCMC chains to obtain lower
bounds on the error of each posterior functional of interest. We also develop a
reliability check for TADDAA to determine when the lower bounds should not be
trusted. Numerical experiments validate the practical utility and computational
efficiency of our approach on a range of synthetic distributions and real-data
examples, including sparse logistic regression and Bayesian neural network
models.
Related papers
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Conditional expectation with regularization for missing data imputation [19.254291863337347]
Missing data frequently occurs in datasets across various domains, such as medicine, sports, and finance.
We propose a new algorithm named "conditional Distribution-based Imputation of Missing Values with Regularization" (DIMV)
DIMV operates by determining the conditional distribution of a feature that has missing entries, using the information from the fully observed features as a basis.
arXiv Detail & Related papers (2023-02-02T06:59:15Z) - Faithful Heteroscedastic Regression with Neural Networks [2.2835610890984164]
Parametric methods that employ neural networks for parameter maps can capture complex relationships in the data.
We make two simple modifications to optimization to produce a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart.
Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration.
arXiv Detail & Related papers (2022-12-18T22:34:42Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.