Variational Bayesian surrogate modelling with application to robust design optimisation
- URL: http://arxiv.org/abs/2404.14857v2
- Date: Fri, 11 Oct 2024 20:53:00 GMT
- Title: Variational Bayesian surrogate modelling with application to robust design optimisation
- Authors: Thomas A. Archbold, Ieva Kazlauskaite, Fehmi Cirak,
- Abstract summary: Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
- Score: 0.9626666671366836
- License:
- Abstract: Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current deterministic computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogate is trained by fitting to data obtained from a deterministic computational model. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a Gaussian trial density with free variational parameters and the discrepancy between them is measured using the Kullback-Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.28438857884398]
We consider a linear mean regression model with random design and potentially heteroscedastic, heavy-tailed errors.
We use a strictly convex, smooth variant of the Huber loss function with tuning parameter depending on the parameters of the problem.
For the resulting estimator we show sign-consistency and optimal rates of convergence in the $ell_infty$ norm.
arXiv Detail & Related papers (2020-11-03T09:46:31Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
This paper presents a new variable selection approach integrated with Gaussian process (GP) regression.
The choice of tuning parameters and the accuracy of the estimation are evaluated with the simulation some chosen benchmark approaches.
arXiv Detail & Related papers (2020-08-25T01:06:10Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.