Adapting Knowledge for Few-shot Table-to-Text Generation
- URL: http://arxiv.org/abs/2302.12468v3
- Date: Wed, 27 Mar 2024 06:46:56 GMT
- Title: Adapting Knowledge for Few-shot Table-to-Text Generation
- Authors: Zhixin Guo, Minyxuan Yan, Jiexing Qi, Jianping Zhou, Ziwei He, Guanjie Zheng, Xinbing Wang,
- Abstract summary: We propose a novel framework: Adapt-Knowledge-to-Generate (AKG)
AKG adapts unlabeled domain-specific knowledge into the model, which brings at least three benefits.
Our model achieves superior performance in terms of both fluency and accuracy as judged by human and automatic evaluations.
- Score: 35.59842534346997
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pretrained language models (PLMs) have made remarkable progress in table-to-text generation tasks. However, the lack of domain-specific knowledge makes it challenging to bridge the topological gap between tabular data and text, especially in real-world applications with limited resources. To mitigate the limitation of insufficient labeled data, we propose a novel framework: Adapt-Knowledge-to-Generate (AKG). The core insight of AKG is to adapt unlabeled domain-specific knowledge into the model, which brings at least three benefits: (1) it injects representation of normal table-related descriptions to bridge the topological gap between tabular data and texts; (2) it enables us to use large amounts of unlabeled domain-specific knowledge fully, which can alleviate the PLMs' inherent shortcomings of lacking domain knowledge; (3) it allows us to design various tasks to employ the domain-specific knowledge. Extensive experiments and analyses are conducted on three open-domain, few-shot natural language generation (NLG) data sets: Humans, Songs, and Books. Compared to previous state-of-the-art approaches, our model achieves superior performance in terms of both fluency and accuracy as judged by human and automatic evaluations.
Related papers
- GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - Learning Knowledge-Enhanced Contextual Language Representations for
Domain Natural Language Understanding [46.00400830499326]
We propose a Knowledge-enhanced lANGuAge Representation learning framework for various clOsed dOmains (KANGAROO)
In the experiments, we evaluate KANGAROO over various knowledge-aware and general NLP tasks in both full and few-shot learning settings.
arXiv Detail & Related papers (2023-11-12T07:37:24Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge
Memorization [41.20314472839442]
We suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings.
The design of our framework consists of two aspects: a prompt planner and a knowledge adapter.
Our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.
arXiv Detail & Related papers (2023-02-09T03:04:11Z) - A Unified Knowledge Graph Augmentation Service for Boosting
Domain-specific NLP Tasks [10.28161912127425]
We propose KnowledgeDA, a unified domain language model development service to enhance the task-specific training procedure with domain knowledge graphs.
We implement a prototype of KnowledgeDA to learn language models for two domains, healthcare and software development.
arXiv Detail & Related papers (2022-12-10T09:18:43Z) - Attend, Memorize and Generate: Towards Faithful Table-to-Text Generation
in Few Shots [58.404516361586325]
Few-shot table-to-text generation is a task of composing fluent and faithful sentences to convey table content using limited data.
This paper proposes a novel approach, Memorize and Generate (called AMG), inspired by the text generation process of humans.
arXiv Detail & Related papers (2022-03-01T20:37:20Z) - Streaming Self-Training via Domain-Agnostic Unlabeled Images [62.57647373581592]
We present streaming self-training (SST) that aims to democratize the process of learning visual recognition models.
Key to SST are two crucial observations: (1) domain-agnostic unlabeled images enable us to learn better models with a few labeled examples without any additional knowledge or supervision; and (2) learning is a continuous process and can be done by constructing a schedule of learning updates.
arXiv Detail & Related papers (2021-04-07T17:58:39Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
We propose a knowledge-grounded pre-training (KGPT) to generate knowledge-enriched text.
We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness.
Under zero-shot setting, our model achieves over 30 ROUGE-L on WebNLG while all other baselines fail.
arXiv Detail & Related papers (2020-10-05T19:59:05Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
We propose a novel adaptable framework, namely knowledge tracing (AKT) to address the DAKT problem.
For the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model.
For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training.
arXiv Detail & Related papers (2020-01-14T15:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.