論文の概要: Disease Severity Regression with Continuous Data Augmentation
- arxiv url: http://arxiv.org/abs/2302.12482v1
- Date: Fri, 24 Feb 2023 06:48:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 14:24:00.161505
- Title: Disease Severity Regression with Continuous Data Augmentation
- Title(参考訳): 連続データ拡張による重症度低下
- Authors: Shumpei Takezaki, Kiyohito Tanaka, Seiichi Uchida, Takeaki Kadota
- Abstract要約: 医療画像のための畳み込みニューラルネットワーク(CNN)による病気の重度回帰には、重度レベルをラベル付けした十分な数の画像サンプルが必要である。
条件付き生成逆数ネットワーク(cGAN)ベースのデータ拡張(DA)が考えられるが、2つの問題に遭遇する。
この2つの問題に対する解決策として,継続的DAを提案する。
- 参考スコア(独自算出の注目度): 8.373151777137792
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Disease severity regression by a convolutional neural network (CNN) for
medical images requires a sufficient number of image samples labeled with
severity levels. Conditional generative adversarial network (cGAN)-based data
augmentation (DA) is a possible solution, but it encounters two issues. The
first issue is that existing cGANs cannot deal with real-valued severity levels
as their conditions, and the second is that the severity of the generated
images is not fully reliable. We propose continuous DA as a solution to the two
issues. Our method uses continuous severity GAN to generate images at
real-valued severity levels and dataset-disjoint multi-objective optimization
to deal with the second issue. Our method was evaluated for estimating
ulcerative colitis (UC) severity of endoscopic images and achieved higher
classification performance than conventional DA methods.
- Abstract(参考訳): 医療画像のための畳み込みニューラルネットワーク(CNN)による病気の重度回帰には、重度レベルをラベル付けした十分な数の画像サンプルが必要である。
条件付き生成逆数ネットワーク(cGAN)ベースのデータ拡張(DA)が考えられるが、2つの問題に遭遇する。
第1の問題は、既存のcGANが実値の重大度を条件として扱えないことであり、第2の問題は、生成した画像の重大度が完全に信頼できないことである。
我々はこの2つの問題に対する解決策として連続daを提案する。
本手法では, 連続重大度GANを用いて, 実数値重大度レベルの画像を生成するとともに, 2番目の問題に対処するために, データセット非結合多目的最適化を行う。
内視鏡画像の潰瘍性大腸炎(UC)重症度を推定し,従来のDA法よりも高い分類性能を示した。
関連論文リスト
- Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
そこで我々は, 局所病変生成手法を2つ提案し, 小型医用画像データセットの増大に対処する。
最初のアプローチでは、古典的な画像処理技術であるPoisson Image Editingアルゴリズムを使用して、リアルな画像合成を生成する。
第2のアプローチでは、微調整されたイメージインペインティングGANを利用して、現実的な病変を合成する新しい生成手法を導入している。
論文 参考訳(メタデータ) (2024-11-05T13:44:25Z) - MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
神経ネットワークに基づくシステムの臨床実践への統合は、ドメインの一般化と堅牢性に関連する課題によって制限される。
我々は、12のデータセットと9つの画像モダリティをカバーするMedMNIST+コレクションに基づくベンチマークデータセットであるMedMNIST-Cを作成し、オープンソース化した。
論文 参考訳(メタデータ) (2024-06-25T13:20:39Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
我々は,GANに基づく拡張性能のデータセットサイズ依存性について,小サンプルに着目して検討した。
両方のセットでStyleGAN2-ADAをトレーニングし、生成した画像の品質を検証した後、マルチクラス分類問題における拡張アプローチの1つとしてトレーニングされたGANを使用する。
GANベースの拡張アプローチは、中規模および大規模データセットでは古典的な拡張に匹敵するが、より小さなデータセットでは不十分である。
論文 参考訳(メタデータ) (2024-01-26T08:28:13Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
GAN(Generative Adversarial Network)を用いたクラス条件画像生成について,様々な手法を用いて検討した。
本稿では,DuDGANと呼ばれる2次元拡散型ノイズ注入法を取り入れたGANを用いたクラス条件画像生成手法を提案する。
提案手法は,画像生成のための現状条件付きGANモデルよりも性能的に優れている。
論文 参考訳(メタデータ) (2023-05-24T07:59:44Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - MIRST-DM: Multi-Instance RST with Drop-Max Layer for Robust
Classification of Breast Cancer [62.997667081978825]
MIRST-DMと呼ばれるドロップマックス層を用いたマルチインスタンスRTTを提案し、小さなデータセット上でよりスムーズな決定境界を学習する。
提案手法は1,190画像の小さな乳房超音波データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-02T20:25:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。