Joint Learning of Blind Super-Resolution and Crack Segmentation for
Realistic Degraded Images
- URL: http://arxiv.org/abs/2302.12491v3
- Date: Sun, 25 Feb 2024 17:25:16 GMT
- Title: Joint Learning of Blind Super-Resolution and Crack Segmentation for
Realistic Degraded Images
- Authors: Yuki Kondo and Norimichi Ukita
- Abstract summary: This paper proposes crack segmentation augmented by super resolution (SR) with deep neural networks.
A SR network is jointly trained with a binary segmentation network in an end-to-end manner.
For realistic scenarios, the SR network is extended from non-blind to blind for processing a low-resolution image degraded by unknown blurs.
- Score: 16.497489431525565
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes crack segmentation augmented by super resolution (SR)
with deep neural networks. In the proposed method, a SR network is jointly
trained with a binary segmentation network in an end-to-end manner. This joint
learning allows the SR network to be optimized for improving segmentation
results. For realistic scenarios, the SR network is extended from non-blind to
blind for processing a low-resolution image degraded by unknown blurs. The
joint network is improved by our proposed two extra paths that further
encourage the mutual optimization between SR and segmentation. Comparative
experiments with State of The Art (SoTA) segmentation methods demonstrate the
superiority of our joint learning, and various ablation studies prove the
effects of our contributions.
Related papers
- Bridging Component Learning with Degradation Modelling for Blind Image
Super-Resolution [69.11604249813304]
We propose a components decomposition and co-optimization network (CDCN) for blind SR.
CDCN decomposes the input LR image into structure and detail components in feature space.
We present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process.
arXiv Detail & Related papers (2022-12-03T14:53:56Z) - The Best of Both Worlds: a Framework for Combining Degradation
Prediction with High Performance Super-Resolution Networks [14.804000317612305]
We present a framework for combining blind SR prediction mechanism with any deep SR network.
We show that our hybrid models consistently achieve stronger SR performance than both their non-blind and blind counterparts.
arXiv Detail & Related papers (2022-11-09T16:49:35Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
Structures matter in single image super-resolution (SISR)
Recent studies have promoted the development of SISR by recovering photo-realistic images.
However, there are still undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2021-09-26T08:48:27Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - Reconstruction and Segmentation of Parallel MR Data using Image Domain
DEEP-SLR [25.077510176642807]
We introduce an image domain deep network for calibrationless recovery of undersampled PMRI data.
To minimize segmentation errors, we combined the proposed scheme with a segmentation network and trained it in an end-to-end fashion.
In addition to reducing segmentation errors, this approach also offers improved reconstruction performance by reducing overfitting.
arXiv Detail & Related papers (2021-02-01T21:15:59Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
Structures matter in single image super resolution (SISR)
Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR.
However, there are always undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2020-03-29T17:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.