論文の概要: FedPDC:Federated Learning for Public Dataset Correction
- arxiv url: http://arxiv.org/abs/2302.12503v1
- Date: Fri, 24 Feb 2023 08:09:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 14:14:11.693333
- Title: FedPDC:Federated Learning for Public Dataset Correction
- Title(参考訳): FedPDC:公開データセット修正のためのフェデレーションラーニング
- Authors: Yuquan Zhang, Yongquan Zhang
- Abstract要約: フェデレート学習は、非IIDシナリオにおける従来の機械学習よりも分類精度が低い。
局所モデルのアグリゲーションモードと局所学習の損失関数を最適化するために,新しいアルゴリズムであるFedPDCを提案する。
多くのベンチマーク実験において、FedPDCは極めて不均衡なデータ分布の場合、グローバルモデルの精度を効果的に向上させることができる。
- 参考スコア(独自算出の注目度): 1.5533842336139065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As people pay more and more attention to privacy protection, Federated
Learning (FL), as a promising distributed machine learning paradigm, is
receiving more and more attention. However, due to the biased distribution of
data on devices in real life, federated learning has lower classification
accuracy than traditional machine learning in Non-IID scenarios. Although there
are many optimization algorithms, the local model aggregation in the parameter
server is still relatively traditional. In this paper, a new algorithm FedPDC
is proposed to optimize the aggregation mode of local models and the loss
function of local training by using the shared data sets in some industries. In
many benchmark experiments, FedPDC can effectively improve the accuracy of the
global model in the case of extremely unbalanced data distribution, while
ensuring the privacy of the client data. At the same time, the accuracy
improvement of FedPDC does not bring additional communication costs.
- Abstract(参考訳): プライバシ保護にもっと注意を払うようになるにつれて、有望な分散機械学習パラダイムである連合学習(federated learning:fl)がますます注目を集めている。
しかし、実生活におけるデバイス上のデータの偏りにより、フェデレーション学習は非IIDシナリオにおける従来の機械学習よりも分類精度が低い。
最適化アルゴリズムは多数存在するが、パラメータサーバのローカルモデル集約は比較的伝統的である。
本稿では,いくつかの産業における共有データセットを用いて,局所モデルの集約モードと局所トレーニングの損失関数を最適化する新しいアルゴリズムfedpdcを提案する。
多くのベンチマーク実験において、FedPDCはクライアントデータのプライバシーを確保しつつ、極めて不均衡なデータ分散の場合のグローバルモデルの精度を効果的に改善することができる。
同時に、FedPDCの精度向上は、追加の通信コストをもたらしない。
関連論文リスト
- Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
フェデレートラーニング(FL)は、ローカルデータを送信することなく、複数のクライアント間で共有モデルを協調的にトレーニングすることを目的としている。
本稿では,ロジットの校正により局所モデル間の最適化バイアスを補正するFedBalanceを提案する。
提案手法は最先端手法に比べて平均精度が13%高い。
論文 参考訳(メタデータ) (2023-11-14T14:37:33Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
言語モデルのプライベート・フェデレーション・ラーニング(FL)について検討する。
公開データは、大小両方の言語モデルのプライバシーとユーティリティのトレードオフを改善するために使われてきた。
提案手法は,プライベートなデータ分布に近い公開データをサンプリングするための理論的基盤を持つ新しい分布マッチングアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-20T07:55:58Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation [22.151404603413752]
Federated Learning(FL)は、ローカルノードが中央モデルを協調的にトレーニングする機械学習パラダイムである。
既存のFLメソッドはモデルパラメータを共有したり、不均衡なデータ分散の問題に対処するために共蒸留を用いるのが一般的である。
我々は,一発のオフライン知識蒸留を用いたFLフレームワークにおいて,プライバシ保護と通信効率のよい手法を開発した。
論文 参考訳(メタデータ) (2022-09-10T05:20:31Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。