Modelling Temporal Document Sequences for Clinical ICD Coding
- URL: http://arxiv.org/abs/2302.12666v1
- Date: Fri, 24 Feb 2023 14:41:48 GMT
- Title: Modelling Temporal Document Sequences for Clinical ICD Coding
- Authors: Clarence Boon Liang Ng, Diogo Santos, Marek Rei
- Abstract summary: We propose a hierarchical transformer architecture that uses text across the entire sequence of clinical notes in each hospital stay for ICD coding.
While using all clinical notes increases the quantity of data substantially, superconvergence can be used to reduce training costs.
Our model exceeds the prior state-of-the-art when using only discharge summaries as input, and achieves further performance improvements when all clinical notes are used as input.
- Score: 9.906895077843663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Past studies on the ICD coding problem focus on predicting clinical codes
primarily based on the discharge summary. This covers only a small fraction of
the notes generated during each hospital stay and leaves potential for
improving performance by analysing all the available clinical notes. We propose
a hierarchical transformer architecture that uses text across the entire
sequence of clinical notes in each hospital stay for ICD coding, and
incorporates embeddings for text metadata such as their position, time, and
type of note. While using all clinical notes increases the quantity of data
substantially, superconvergence can be used to reduce training costs. We
evaluate the model on the MIMIC-III dataset. Our model exceeds the prior
state-of-the-art when using only discharge summaries as input, and achieves
further performance improvements when all clinical notes are used as input.
Related papers
- Harmonising the Clinical Melody: Tuning Large Language Models for Hospital Course Summarisation in Clinical Coding [5.279406017862076]
The challenge of summarising a hospital course remains an open area for further research and development.
We adapted three pre trained LLMs, Llama 3, BioMistral, Mistral Instruct v0.1 for the hospital course summarisation task.
The fine tuned models were evaluated using BERTScore and ROUGE metrics to assess the effectiveness of clinical domain fine tuning.
arXiv Detail & Related papers (2024-09-23T00:35:23Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
We present three key contributions to the field of clinical note generation using large language models (LLMs)
First, we introduce CliniKnote, a dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes.
Second, we propose K-SOAP, which enhances traditional SOAPcitepodder20soap (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information.
Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various
arXiv Detail & Related papers (2024-08-26T18:39:31Z) - Making the Most Out of the Limited Context Length: Predictive Power
Varies with Clinical Note Type and Note Section [70.37720062263176]
We propose a framework to analyze the sections with high predictive power.
Using MIMIC-III, we show that: 1) predictive power distribution is different between nursing notes and discharge notes and 2) combining different types of notes could improve performance when the context length is large.
arXiv Detail & Related papers (2023-07-13T20:04:05Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
We reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models.
We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation.
We present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models.
arXiv Detail & Related papers (2023-04-21T11:54:44Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
We propose a graph-transformer-based network to handle heterogeneous clinical data.
We show the benefit of our pre-training method in a self-supervised and a transfer learning setting.
arXiv Detail & Related papers (2022-07-21T16:59:09Z) - Hierarchical Label-wise Attention Transformer Model for Explainable ICD
Coding [10.387366211090734]
We propose a hierarchical label-wise attention Transformer model (HiLAT) for the explainable prediction of ICD codes from clinical documents.
We evaluate HiLAT using hospital discharge summaries and their corresponding ICD-9 codes from the MIMIC-III database.
Visualisations of attention weights present a potential explainability tool for checking the face validity of ICD code predictions.
arXiv Detail & Related papers (2022-04-22T14:12:22Z) - Improving the Factual Accuracy of Abstractive Clinical Text
Summarization using Multi-Objective Optimization [3.977582258550673]
We propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization.
In this study, we propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization.
arXiv Detail & Related papers (2022-04-02T07:59:28Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
It is not clear if pretrained models are useful for medical code prediction without further architecture engineering.
We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information.
Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes.
arXiv Detail & Related papers (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - An Interpretable End-to-end Fine-tuning Approach for Long Clinical Text [72.62848911347466]
Unstructured clinical text in EHRs contains crucial information for applications including decision support, trial matching, and retrospective research.
Recent work has applied BERT-based models to clinical information extraction and text classification, given these models' state-of-the-art performance in other NLP domains.
In this work, we propose a novel fine-tuning approach called SnipBERT. Instead of using entire notes, SnipBERT identifies crucial snippets and feeds them into a truncated BERT-based model in a hierarchical manner.
arXiv Detail & Related papers (2020-11-12T17:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.