Modularity-based approach for tracking communities in dynamic social
networks
- URL: http://arxiv.org/abs/2302.12759v2
- Date: Fri, 13 Oct 2023 09:20:45 GMT
- Title: Modularity-based approach for tracking communities in dynamic social
networks
- Authors: Michele Mazza, Guglielmo Cola, Maurizio Tesconi
- Abstract summary: We introduce a novel framework for tracking communities over time in a dynamic network.
Our framework adopts a modularity-based strategy and does not require a predefined threshold.
We validated the efficacy of our framework through extensive experiments on synthetic networks.
- Score: 0.39462888523270856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Community detection is a crucial task to unravel the intricate dynamics of
online social networks. The emergence of these networks has dramatically
increased the volume and speed of interactions among users, presenting
researchers with unprecedented opportunities to explore and analyze the
underlying structure of social communities. Despite a growing interest in
tracking the evolution of groups of users in real-world social networks, the
predominant focus of community detection efforts has been on communities within
static networks. In this paper, we introduce a novel framework for tracking
communities over time in a dynamic network, where a series of significant
events is identified for each community. Our framework adopts a
modularity-based strategy and does not require a predefined threshold, leading
to a more accurate and robust tracking of dynamic communities. We validated the
efficacy of our framework through extensive experiments on synthetic networks
featuring embedded events. The results indicate that our framework can
outperform the state-of-the-art methods. Furthermore, we utilized the proposed
approach on a Twitter network comprising over 60,000 users and 5 million tweets
throughout 2020, showcasing its potential in identifying dynamic communities in
real-world scenarios. The proposed framework can be applied to different social
networks and provides a valuable tool to gain deeper insights into the
evolution of communities in dynamic social networks.
Related papers
- Community Detection for Heterogeneous Multiple Social Networks [6.863667633281842]
The community plays a crucial role in understanding user behavior and network characteristics in social networks.
This paper presents a community detection method based on nonnegative matrix tri-factorization for multiple social networks.
The effectiveness of the proposed method is evaluated with new metrics on Twitter, Instagram, and Tumblr.
arXiv Detail & Related papers (2024-05-07T14:52:34Z) - CS-TGN: Community Search via Temporal Graph Neural Networks [0.0]
We propose a query-driven Temporal Graph Convolutional Network (CS-TGN) that can capture flexible community structures.
CS-TGN first combines the local query-dependent structure and the global graph embedding in each snapshot of the network.
We demonstrate how this model can be used for interactive community search in an online setting.
arXiv Detail & Related papers (2023-03-15T22:23:32Z) - This Must Be the Place: Predicting Engagement of Online Communities in a
Large-scale Distributed Campaign [70.69387048368849]
We study the behavior of communities with millions of active members.
We develop a hybrid model, combining textual cues, community meta-data, and structural properties.
We demonstrate the applicability of our model through Reddit's r/place a large-scale online experiment.
arXiv Detail & Related papers (2022-01-14T08:23:16Z) - Towards Modularity Optimization Using Reinforcement Learning to
Community Detection in Dynamic Social Networks [0.0]
We propose an approach to the problem of community detection in dynamic networks based on a reinforcement learning strategy.
An experiment using synthetic and real-world dynamic network data shows results comparable to static scenarios.
arXiv Detail & Related papers (2021-11-25T19:55:57Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A multilevel clustering technique for community detection [0.0]
This study presents a novel detection method based on a scalable framework to identify related communities in a network.
We propose a multilevel clustering technique (MCT) that leverages structural and textual information to identify local communities termed microcosms.
The approach offers a better understanding and clarity toward describing how low-level communities evolve and behave on Twitter.
arXiv Detail & Related papers (2021-01-16T23:26:44Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
arXiv Detail & Related papers (2021-01-03T02:32:45Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Community detection and Social Network analysis based on the Italian
wars of the 15th century [0.0]
We study social network modelling by using human interaction as a basis.
We propose a new set of functions, affinities, designed to capture the nature of the local interactions among each pair of actors in a network.
We develop a new community detection algorithm, the Borgia Clustering, where communities naturally arise from the multi-agent interaction in the network.
arXiv Detail & Related papers (2020-07-06T11:05:07Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.