A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning
- URL: http://arxiv.org/abs/2101.01669v1
- Date: Sun, 3 Jan 2021 02:32:45 GMT
- Title: A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning
- Authors: Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Philip S. Yu, Weixiong
Zhang
- Abstract summary: We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
- Score: 95.27249880156256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection, a fundamental task for network analysis, aims to
partition a network into multiple sub-structures to help reveal their latent
functions. Community detection has been extensively studied in and broadly
applied to many real-world network problems. Classical approaches to community
detection typically utilize probabilistic graphical models and adopt a variety
of prior knowledge to infer community structures. As the problems that network
methods try to solve and the network data to be analyzed become increasingly
more sophisticated, new approaches have also been proposed and developed,
particularly those that utilize deep learning and convert networked data into
low dimensional representation. Despite all the recent advancement, there is
still a lack of insightful understanding of the theoretical and methodological
underpinning of community detection, which will be critically important for
future development of the area of network analysis. In this paper, we develop
and present a unified architecture of network community-finding methods to
characterize the state-of-the-art of the field of community detection.
Specifically, we provide a comprehensive review of the existing community
detection methods and introduce a new taxonomy that divides the existing
methods into two categories, namely probabilistic graphical model and deep
learning. We then discuss in detail the main idea behind each method in the two
categories. Furthermore, to promote future development of community detection,
we release several benchmark datasets from several problem domains and
highlight their applications to various network analysis tasks. We conclude
with discussions of the challenges of the field and suggestions of possible
directions for future research.
Related papers
- A Unified Framework for Exploratory Learning-Aided Community Detection
Under Topological Uncertainty [16.280950663982107]
META-CODE is a unified framework for detecting overlapping communities in social networks.
It consists of three steps: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community-affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network.
arXiv Detail & Related papers (2023-04-10T10:22:21Z) - META-CODE: Community Detection via Exploratory Learning in Topologically
Unknown Networks [5.299515147443958]
META-CODE is an end-to-end solution for detecting overlapping communities in networks with unknown topology.
It consists of three steps: 1) initial network inference, 2) node-level community-affiliation embedding based on graph neural networks (GNNs) trained by our new reconstruction loss, and 3) network exploration via community-affiliation-based node queries.
arXiv Detail & Related papers (2022-08-23T15:02:48Z) - GCN-based Multi-task Representation Learning for Anomaly Detection in
Attributed Networks [31.565081319419225]
Anomaly detection in attributed networks has received a considerable attention in recent years due to its applications in a wide range of domains such as finance, network security, and medicine.
Traditional approaches cannot be adopted on attributed networks' settings to solve the problem of anomaly detection.
We propose a new architecture on anomaly detection using multi-task learning.
arXiv Detail & Related papers (2022-07-08T04:54:53Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
Clustering is a fundamental machine learning task which has been widely studied in the literature.
Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community.
We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering.
arXiv Detail & Related papers (2022-06-15T15:05:13Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
weakly supervised object localization and detection plays an important role for developing new generation computer vision systems.
We review (1) classic models, (2) approaches with feature representations from off-the-shelf deep networks, (3) approaches solely based on deep learning, and (4) publicly available datasets and standard evaluation metrics that are widely used in this field.
We discuss the key challenges in this field, development history of this field, advantages/disadvantages of the methods in each category, relationships between methods in different categories, applications of the weakly supervised object localization and detection methods, and potential future directions to further promote the development of this research field
arXiv Detail & Related papers (2021-04-16T06:44:50Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.