Implicit neural representations for unsupervised super-resolution and
denoising of 4D flow MRI
- URL: http://arxiv.org/abs/2302.12835v1
- Date: Fri, 24 Feb 2023 08:42:04 GMT
- Title: Implicit neural representations for unsupervised super-resolution and
denoising of 4D flow MRI
- Authors: Simone Saitta, Marcello Carioni, Subhadip Mukherjee, Carola-Bibiane
Sch\"onlieb, Alberto Redaelli
- Abstract summary: Our study investigates SIRENs for time-varying 3-directional velocity fields measured in the aorta by 4D flow MRI.
We trained our method on voxel coordinates and benchmarked our approach using synthetic measurements and a real 4D flow MRI scan.
Our optimized SIREN architecture outperformed state-of-the-art techniques, producing denoised and super-resolved velocity fields from clinical data.
- Score: 1.207455285737927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 4D flow MRI is a non-invasive imaging method that can measure blood flow
velocities over time. However, the velocity fields detected by this technique
have limitations due to low resolution and measurement noise. Coordinate-based
neural networks have been researched to improve accuracy, with SIRENs being
suitable for super-resolution tasks. Our study investigates SIRENs for
time-varying 3-directional velocity fields measured in the aorta by 4D flow
MRI, achieving denoising and super-resolution. We trained our method on voxel
coordinates and benchmarked our approach using synthetic measurements and a
real 4D flow MRI scan. Our optimized SIREN architecture outperformed
state-of-the-art techniques, producing denoised and super-resolved velocity
fields from clinical data. Our approach is quick to execute and straightforward
to implement for novel cases, achieving 4D super-resolution.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Neural Fields for Continuous Periodic Motion Estimation in 4D Cardiovascular Imaging [1.1786989970743633]
Time-resolved three-dimensional flow MRI (4D flow MRI) provides a unique non-invasive solution to visualize and quantify hemodynamics in blood vessels such as the aortic arch.
Most current analysis methods for arterial 4D flow MRI use static artery walls because of the difficulty in obtaining a full cycle segmentation.
We propose a neural fields-based method that directly estimates continuous periodic wall deformations throughout the cardiac cycle.
arXiv Detail & Related papers (2024-07-30T10:50:51Z) - Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End
Neural Network for 4D-MRI with Simultaneous Motion Estimation and
Super-Resolution [21.75329634476446]
We develop a novel deep learning framework called the coarse-super-resolution-fine network (CoSF-Net) to achieve simultaneous motion estimation and excavating super-resolution in a unified model.
Compared with existing networks and three state-of-the-art conventional algorithms, CoSF-Net not only accurately estimated the deformable vector fields between the respiratory phases of 4D-MRI but also simultaneously improved the spatial resolution of 4D-MRI with enhanced anatomic features.
arXiv Detail & Related papers (2022-11-21T01:42:51Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Predicting 4D Liver MRI for MR-guided Interventions [2.9699476315275772]
Organ motion poses an unresolved challenge in image-guided interventions.
We propose a novel approach for real-time, high-resolution 4D MRI with large fields of view.
We show that small training sizes with short acquisition times down to 2min can already achieve promising results.
arXiv Detail & Related papers (2022-02-25T11:34:25Z) - Non-invasive hemodynamic analysis for aortic regurgitation using
computational fluid dynamics and deep learning [2.150638298922378]
Changes in cardiovascular hemodynamics are closely related to the development of aortic regurgitation (AR)
These metrics can be non-invasively obtained using four-dimensional (4D) flow magnetic resonance imaging (MRI)
However, insufficient resolution often results from limitations in 4D flow MRI and complex AR hemodynamics.
To address this, computational fluid dynamics simulations were transformed into synthetic 4D flow MRI data and used to train a variety of neural networks.
arXiv Detail & Related papers (2021-11-23T05:19:42Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single OCT images.
We extend 3D CNNs to 4D-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking.
arXiv Detail & Related papers (2020-07-02T12:02:20Z) - 4DFlowNet: Super-Resolution 4D Flow MRI using Deep Learning and
Computational Fluid Dynamics [0.0795451369160375]
An increase in the image resolution would provide more accuracy and allow better assessment of the blood flow, especially for patients with abnormal flows.
We utilized computational fluid dynamics simulations to generate synthetic 4D flow MRI data.
Our novel 4DFlowNet network was trained on this synthetic 4D flow data and was capable in producing noise-free super resolution 4D flow phase images with upsample factor of 2.
arXiv Detail & Related papers (2020-04-15T12:16:52Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.