Deep learning for temporal super-resolution 4D Flow MRI
- URL: http://arxiv.org/abs/2501.08780v1
- Date: Wed, 15 Jan 2025 13:01:47 GMT
- Title: Deep learning for temporal super-resolution 4D Flow MRI
- Authors: Pia Callmer, Mia Bonini, Edward Ferdian, David Nordsletten, Daniel Giese, Alistair A. Young, Alexander Fyrdahl, David Marlevi,
- Abstract summary: The aim of this study was to implement and evaluate a residual network for temporal super-resolution 4D Flow MRI.
Training and testing were performed using synthetic 4D Flow MRI data originating from patient-specific in-silico models, as well as using in-vivo datasets.
Our results highlight the potential of utilizing data-driven neural networks for temporal super-resolution 4D Flow MRI.
- Score: 34.90138772411514
- License:
- Abstract: 4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive technique for volumetric, time-resolved blood flow quantification. However, apparent trade-offs between acquisition time, image noise, and resolution limit clinical applicability. In particular, in regions of highly transient flow, coarse temporal resolution can hinder accurate capture of physiologically relevant flow variations. To overcome these issues, post-processing techniques using deep learning have shown promising results to enhance resolution post-scan using so-called super-resolution networks. However, while super-resolution has been focusing on spatial upsampling, temporal super-resolution remains largely unexplored. The aim of this study was therefore to implement and evaluate a residual network for temporal super-resolution 4D Flow MRI. To achieve this, an existing spatial network (4DFlowNet) was re-designed for temporal upsampling, adapting input dimensions, and optimizing internal layer structures. Training and testing were performed using synthetic 4D Flow MRI data originating from patient-specific in-silico models, as well as using in-vivo datasets. Overall, excellent performance was achieved with input velocities effectively denoised and temporally upsampled, with a mean absolute error (MAE) of 1.0 cm/s in an unseen in-silico setting, outperforming deterministic alternatives (linear interpolation MAE = 2.3 cm/s, sinc interpolation MAE = 2.6 cm/s). Further, the network synthesized high-resolution temporal information from unseen low-resolution in-vivo data, with strong correlation observed at peak flow frames. As such, our results highlight the potential of utilizing data-driven neural networks for temporal super-resolution 4D Flow MRI, enabling high-frame-rate flow quantification without extending acquisition times beyond clinically acceptable limits.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Implicit neural representations for unsupervised super-resolution and
denoising of 4D flow MRI [1.207455285737927]
Our study investigates SIRENs for time-varying 3-directional velocity fields measured in the aorta by 4D flow MRI.
We trained our method on voxel coordinates and benchmarked our approach using synthetic measurements and a real 4D flow MRI scan.
Our optimized SIREN architecture outperformed state-of-the-art techniques, producing denoised and super-resolved velocity fields from clinical data.
arXiv Detail & Related papers (2023-02-24T08:42:04Z) - Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End
Neural Network for 4D-MRI with Simultaneous Motion Estimation and
Super-Resolution [21.75329634476446]
We develop a novel deep learning framework called the coarse-super-resolution-fine network (CoSF-Net) to achieve simultaneous motion estimation and excavating super-resolution in a unified model.
Compared with existing networks and three state-of-the-art conventional algorithms, CoSF-Net not only accurately estimated the deformable vector fields between the respiratory phases of 4D-MRI but also simultaneously improved the spatial resolution of 4D-MRI with enhanced anatomic features.
arXiv Detail & Related papers (2022-11-21T01:42:51Z) - DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel
UNet for enhancing super-resolution of dynamic MRI [0.27998963147546135]
Magnetic resonance imaging (MRI) provides high spatial resolution and excellent soft-tissue contrast without using harmful ionising radiation.
MRI with high temporal resolution suffers from limited spatial resolution.
Deep learning based super-resolution approaches have been proposed to mitigate this trade-off.
This research addresses the problem by creating a deep learning model which attempts to learn both spatial and temporal relationships.
arXiv Detail & Related papers (2022-02-10T22:20:58Z) - Non-invasive hemodynamic analysis for aortic regurgitation using
computational fluid dynamics and deep learning [2.150638298922378]
Changes in cardiovascular hemodynamics are closely related to the development of aortic regurgitation (AR)
These metrics can be non-invasively obtained using four-dimensional (4D) flow magnetic resonance imaging (MRI)
However, insufficient resolution often results from limitations in 4D flow MRI and complex AR hemodynamics.
To address this, computational fluid dynamics simulations were transformed into synthetic 4D flow MRI data and used to train a variety of neural networks.
arXiv Detail & Related papers (2021-11-23T05:19:42Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single OCT images.
We extend 3D CNNs to 4D-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking.
arXiv Detail & Related papers (2020-07-02T12:02:20Z) - 4DFlowNet: Super-Resolution 4D Flow MRI using Deep Learning and
Computational Fluid Dynamics [0.0795451369160375]
An increase in the image resolution would provide more accuracy and allow better assessment of the blood flow, especially for patients with abnormal flows.
We utilized computational fluid dynamics simulations to generate synthetic 4D flow MRI data.
Our novel 4DFlowNet network was trained on this synthetic 4D flow data and was capable in producing noise-free super resolution 4D flow phase images with upsample factor of 2.
arXiv Detail & Related papers (2020-04-15T12:16:52Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.