Vacuum Entanglement Harvesting in the Ising Model
- URL: http://arxiv.org/abs/2302.12858v1
- Date: Fri, 24 Feb 2023 19:19:44 GMT
- Title: Vacuum Entanglement Harvesting in the Ising Model
- Authors: Hersh Singh, Tanmoy Bhattacharya, Shailesh Chandrasekharan, Rajan
Gupta
- Abstract summary: We demonstrate a protocol that distills Bell pairs out of the ground state of the prototypical transverse-field Ising model.
We explore the behavior of rate of entanglement distillation in various phases, and possible optimizations of the protocol.
- Score: 4.3023406765113315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The low-energy states of quantum many body systems, such as spin chains, are
entangled. Using tensor network computations, we demonstrate a protocol that
distills Bell pairs out of the ground state of the prototypical
transverse-field Ising model. We explore the behavior of rate of entanglement
distillation in various phases, and possible optimizations of the protocol.
Finally, we comment on the protocol as we approach quantum criticality defining
a continuum field theory.
Related papers
- Gate-based protocol simulations for quantum repeaters using quantum-dot
molecules in switchable electric fields [0.0]
Electrically controllable quantum-dot molecules (QDMs) are a promising platform for deterministic entanglement generation.
We develop a microscopic open-quantum-systems approach to model the generation of entangled spin states with high fidelity.
arXiv Detail & Related papers (2023-08-28T13:25:56Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum geometry and bounds on dissipation in slowly driven quantum
systems [0.0]
We show that heat production in slowly driven quantum systems is linked to the topological structure of the driving protocol.
Our results bridge topological phenomena and energy dissipation in slowly driven quantum systems.
arXiv Detail & Related papers (2023-06-29T18:00:03Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - A protocol to create a multi-particle entangled state for
quantum-enhanced sensing [0.0]
We show how entanglement can be adiabatically produced with two control beams and by exploiting cavity-mediated interactions between the atoms.
Our methods will allow for optimal generation of entanglement for the measurement protocol we propose.
arXiv Detail & Related papers (2022-05-26T19:14:20Z) - Probing infinite many-body quantum systems with finite-size quantum
simulators [0.0]
We propose a protocol that makes optimal use of a given finite-size simulator by directly preparing, on its bulk region, a mixed state.
For systems of free fermions in one and two spatial dimensions, we illustrate and explain the underlying physics.
For the example of a non-integrable extended Su-Schrieffer-Heeger model, we demonstrate that our protocol enables a more accurate study of QPTs.
arXiv Detail & Related papers (2021-08-27T16:27:46Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.