In Search of Deep Learning Architectures for Load Forecasting: A
Comparative Analysis and the Impact of the Covid-19 Pandemic on Model
Performance
- URL: http://arxiv.org/abs/2302.13046v1
- Date: Sat, 25 Feb 2023 10:08:23 GMT
- Title: In Search of Deep Learning Architectures for Load Forecasting: A
Comparative Analysis and the Impact of the Covid-19 Pandemic on Model
Performance
- Authors: Sotiris Pelekis, Evangelos Karakolis, Francisco Silva, Vasileios
Schoinas, Spiros Mouzakitis, Georgios Kormpakis, Nuno Amaro, John Psarras
- Abstract summary: Short-term load forecasting (STLF) is crucial to the optimization of their reliability, emissions, and costs.
This work conducts a comparative study of Deep Learning (DL) architectures, with respect to forecasting accuracy and training sustainability.
The case study focuses on day-ahead forecasts for the Portuguese national 15-minute resolution net load time series.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In power grids, short-term load forecasting (STLF) is crucial as it
contributes to the optimization of their reliability, emissions, and costs,
while it enables the participation of energy companies in the energy market.
STLF is a challenging task, due to the complex demand of active and reactive
power from multiple types of electrical loads and their dependence on numerous
exogenous variables. Amongst them, special circumstances, such as the COVID-19
pandemic, can often be the reason behind distribution shifts of load series.
This work conducts a comparative study of Deep Learning (DL) architectures,
namely Neural Basis Expansion Analysis Time Series Forecasting (N-BEATS), Long
Short-Term Memory (LSTM), and Temporal Convolutional Networks (TCN), with
respect to forecasting accuracy and training sustainability, meanwhile
examining their out-of-distribution generalization capabilities during the
COVID-19 pandemic era. A Pattern Sequence Forecasting (PSF) model is used as
baseline. The case study focuses on day-ahead forecasts for the Portuguese
national 15-minute resolution net load time series. The results can be
leveraged by energy companies and network operators (i) to reinforce their
forecasting toolkit with state-of-the-art DL models; (ii) to become aware of
the serious consequences of crisis events on model performance; (iii) as a
high-level model evaluation, deployment, and sustainability guide within a
smart grid context.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Multiscale Spatio-Temporal Enhanced Short-term Load Forecasting of Electric Vehicle Charging Stations [4.239428835958199]
The rapid expansion of electric vehicles (EVs) has rendered the load forecasting of electric vehicle charging stations (EVCS) increasingly critical.
The primary challenge in achieving precise load forecasting for EVCS lies in accounting for the nonlinear of charging behaviors, the spatial interactions among different stations, and the intricate temporal variations in usage patterns.
We propose a Multiscale Spatio-Temporal Enhanced Model (MSTEM) for effective load forecasting at EVCS.
arXiv Detail & Related papers (2024-05-29T12:54:22Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - SaDI: A Self-adaptive Decomposed Interpretable Framework for Electric
Load Forecasting under Extreme Events [25.325870546140788]
We propose a novel forecasting framework, named Self-adaptive Decomposed Interpretable framework(SaDI)
Experiments on both Central China electric load and public energy meters from buildings show that the proposed SaDI framework achieves average 22.14% improvement.
arXiv Detail & Related papers (2023-06-14T07:11:30Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets.
Several deep learning models have been proposed in the literature for STLF, reporting promising results.
arXiv Detail & Related papers (2023-02-23T17:11:04Z) - Advanced Statistical Learning on Short Term Load Process Forecasting [13.466565318976887]
Short Term Load Forecast (STLF) is necessary for effective scheduling, operation optimization trading, and decision-making for electricity consumers.
We propose different statistical nonlinear models to manage these challenges of hard type datasets and forecast 15-min frequency electricity load up to 2-days ahead.
arXiv Detail & Related papers (2021-10-19T12:32:40Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.