Kolmogorov-Arnold Recurrent Network for Short Term Load Forecasting Across Diverse Consumers
- URL: http://arxiv.org/abs/2501.06965v1
- Date: Sun, 12 Jan 2025 22:49:41 GMT
- Title: Kolmogorov-Arnold Recurrent Network for Short Term Load Forecasting Across Diverse Consumers
- Authors: Muhammad Umair Danish, Katarina Grolinger,
- Abstract summary: This paper proposes a novel load forecasting approach that combines the flexibility of Kolmogorov-Arnold Networks with RNN's temporal modeling capabilities.
The proposed KARN model was rigorously evaluated on a variety of real-world datasets, including student residences, detached homes, a home with electric vehicle charging, a townhouse, and industrial buildings.
The results demonstrate KARN's superior accuracy and applicability, making it a promising tool for enhancing load forecasting in diverse energy management scenarios.
- Score: 0.9208007322096533
- License:
- Abstract: Load forecasting plays a crucial role in energy management, directly impacting grid stability, operational efficiency, cost reduction, and environmental sustainability. Traditional Vanilla Recurrent Neural Networks (RNNs) face issues such as vanishing and exploding gradients, whereas sophisticated RNNs such as LSTMs have shown considerable success in this domain. However, these models often struggle to accurately capture complex and sudden variations in energy consumption, and their applicability is typically limited to specific consumer types, such as offices or schools. To address these challenges, this paper proposes the Kolmogorov-Arnold Recurrent Network (KARN), a novel load forecasting approach that combines the flexibility of Kolmogorov-Arnold Networks with RNN's temporal modeling capabilities. KARN utilizes learnable temporal spline functions and edge-based activations to better model non-linear relationships in load data, making it adaptable across a diverse range of consumer types. The proposed KARN model was rigorously evaluated on a variety of real-world datasets, including student residences, detached homes, a home with electric vehicle charging, a townhouse, and industrial buildings. Across all these consumer categories, KARN consistently outperformed traditional Vanilla RNNs, while it surpassed LSTM and Gated Recurrent Units (GRUs) in six buildings. The results demonstrate KARN's superior accuracy and applicability, making it a promising tool for enhancing load forecasting in diverse energy management scenarios.
Related papers
- PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks [47.947045173329315]
Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures.
KANs offer a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as CNNs, RecurrentReduced Networks (RNNs) and Transformers.
This paper introduces PRKANs, which employ several methods to reduce the parameter count in layers, making them comparable to Neural M layers.
arXiv Detail & Related papers (2025-01-13T03:07:39Z) - Grid Frequency Forecasting in University Campuses using Convolutional
LSTM [0.0]
This paper harnesses Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to establish robust time forecasting models for grid frequency.
Individual ConvLSTM models are trained on power consumption data for each campus building and forecast the grid frequency based on historical trends.
An Ensemble Model is formulated to aggregate insights from the building-specific models, delivering comprehensive forecasts for the entire campus.
arXiv Detail & Related papers (2023-10-24T13:53:51Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - In Search of Deep Learning Architectures for Load Forecasting: A
Comparative Analysis and the Impact of the Covid-19 Pandemic on Model
Performance [0.0]
Short-term load forecasting (STLF) is crucial to the optimization of their reliability, emissions, and costs.
This work conducts a comparative study of Deep Learning (DL) architectures, with respect to forecasting accuracy and training sustainability.
The case study focuses on day-ahead forecasts for the Portuguese national 15-minute resolution net load time series.
arXiv Detail & Related papers (2023-02-25T10:08:23Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem.
The electricity consumption datasets were obtained from individual household smart meters.
arXiv Detail & Related papers (2022-12-16T23:42:57Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
We present an STLF algorithm for efficiently predicting the power consumption of individual electrical appliances.
The proposed method builds upon a powerful recurrent neural network (RNN) architecture in deep learning.
arXiv Detail & Related papers (2021-11-23T16:56:37Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
We present a class of exponential smoothed recurrent neural networks (RNNs) which are well suited to modeling non-stationary dynamical systems arising in industrial applications.
Application of exponentially smoothed RNNs to forecasting electricity load, weather data, and stock prices highlight the efficacy of exponential smoothing of the hidden state for multi-step time series forecasting.
arXiv Detail & Related papers (2020-04-09T17:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.