論文の概要: PaRK-Detect: Towards Efficient Multi-Task Satellite Imagery Road
Extraction via Patch-Wise Keypoints Detection
- arxiv url: http://arxiv.org/abs/2302.13263v1
- Date: Sun, 26 Feb 2023 08:26:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 18:03:35.374443
- Title: PaRK-Detect: Towards Efficient Multi-Task Satellite Imagery Road
Extraction via Patch-Wise Keypoints Detection
- Title(参考訳): park-detect:パッチワイズキーポイント検出によるマルチタスク衛星画像の道路抽出
- Authors: Shenwei Xie, Wanfeng Zheng, Zhenglin Xian, Junli Yang, Chuang Zhang,
Ming Wu
- Abstract要約: 我々は、マルチタスク衛星画像道路抽出のための新しい手法、パッチワイド道路キーポイント検出(PaRK-Detect)を提案する。
筆者らのフレームワークは,パッチワイド道路キーポイントの位置と,それら間の近接関係を予測し,道路グラフを単一パスで構築する。
我々は,DeepGlobe, Massachusetts Roads, RoadTracerの既存の最先端手法に対するアプローチを評価し,競争力やより良い結果を得る。
- 参考スコア(独自算出の注目度): 12.145321599949236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatically extracting roads from satellite imagery is a fundamental yet
challenging computer vision task in the field of remote sensing. Pixel-wise
semantic segmentation-based approaches and graph-based approaches are two
prevailing schemes. However, prior works show the imperfections that semantic
segmentation-based approaches yield road graphs with low connectivity, while
graph-based methods with iterative exploring paradigms and smaller receptive
fields focus more on local information and are also time-consuming. In this
paper, we propose a new scheme for multi-task satellite imagery road
extraction, Patch-wise Road Keypoints Detection (PaRK-Detect). Building on top
of D-LinkNet architecture and adopting the structure of keypoint detection, our
framework predicts the position of patch-wise road keypoints and the adjacent
relationships between them to construct road graphs in a single pass.
Meanwhile, the multi-task framework also performs pixel-wise semantic
segmentation and generates road segmentation masks. We evaluate our approach
against the existing state-of-the-art methods on DeepGlobe, Massachusetts
Roads, and RoadTracer datasets and achieve competitive or better results. We
also demonstrate a considerable outperformance in terms of inference speed.
- Abstract(参考訳): 衛星画像から道路を自動的に抽出することは、リモートセンシング分野における基本的なコンピュータビジョンの課題である。
ピクセルワイズセマンティックセグメンテーションに基づくアプローチとグラフベースのアプローチは、2つの一般的なスキームである。
しかし、先行研究はセグメンテーションに基づくアプローチが低接続性で道路グラフを生成できないことを示す一方、反復的な探索パラダイムとより小さな受容場を持つグラフベースの手法は、よりローカル情報にフォーカスし、時間も消費することを示している。
本稿では,マルチタスク衛星画像道路抽出,パッチワイズ道路キーポイント検出(パーク検出)のための新しい手法を提案する。
d-linknetアーキテクチャの上に構築し、キーポイント検出の構造を採用することにより、パッチ毎の道路キーポイントの位置と、それら間の隣接関係を予測し、1つのパスで道路グラフを構築する。
一方、マルチタスクフレームワークはピクセル単位で意味的なセグメンテーションを実行し、道路セグメンテーションマスクを生成する。
我々は,DeepGlobe, Massachusetts Roads, RoadTracerの既存の最先端手法に対するアプローチを評価し,競争力やより良い結果を得る。
また、推論速度の点でかなり優れた性能を示す。
関連論文リスト
- Patched Line Segment Learning for Vector Road Mapping [34.16241268436923]
我々は,幾何的重要性を持つ道路グラフに対して,よく定義されたパッチラインセグメンテーション表現を構築した。
提案手法は,6時間のGPUトレーニングで最先端の性能を達成し,トレーニングコストを32倍に削減する。
論文 参考訳(メタデータ) (2023-09-06T11:33:25Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
2次元画像から目標の相対的な深さを求めるための擬似深度推定法を提案する。
次に,得られた深度情報を用いて,高密度なターゲットセットを複数のスパースなターゲットサブセットに変換するディープカスケードマッチング(DCM)アルゴリズムを設計する。
擬似深度法とDCM戦略をデータアソシエーションプロセスに統合することにより、SparseTrackと呼ばれる新しいトラッカーを提案する。
論文 参考訳(メタデータ) (2023-06-08T14:36:10Z) - RNGDet: Road Network Graph Detection by Transformer in Aerial Images [19.141279413414082]
道路ネットワークグラフは、自動運転車アプリケーションにとって重要な情報を提供する。
手動でアノテートする道路ネットワークグラフは非効率で労働集約的です。
RNGDetという変圧器と模倣学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T01:59:41Z) - Road Extraction from Overhead Images with Graph Neural Networks [18.649284163019516]
本稿では,最終道路グラフを1パスで直接推測する手法を提案する。
鍵となるアイデアは、関心点の特定を担当する完全な畳み込みネットワークと、これらのポイント間のリンクを予測するグラフニューラルネットワークを組み合わせることである。
我々は,一般的なRoadTracerデータセット上の既存の作業に対して評価を行い,競合する結果を得た。
論文 参考訳(メタデータ) (2021-12-09T21:10:27Z) - Modelling Neighbor Relation in Joint Space-Time Graph for Video
Correspondence Learning [53.74240452117145]
本稿では、ラベルなしビデオから信頼できる視覚対応を学習するための自己教師付き手法を提案する。
接続時空間グラフでは,ノードがフレームからサンプリングされたグリッドパッチであり,2種類のエッジによってリンクされる。
学習した表現は、様々な視覚的タスクにおいて最先端の自己監督手法よりも優れています。
論文 参考訳(メタデータ) (2021-09-28T05:40:01Z) - SPIN Road Mapper: Extracting Roads from Aerial Images via Spatial and
Interaction Space Graph Reasoning for Autonomous Driving [64.10636296274168]
道路抽出は、自律航法システムを構築するための重要なステップである。
この問題に対して単に畳み込みニューラルネットワーク(ConvNets)を使用することは、画像内の道路セグメント間の遠い依存関係をキャプチャする非効率であるため、効果がない。
本研究では,ConvNetに接続した時,特徴写像から投影された空間空間および相互作用空間上に構築されたグラフの推論を行う空間空間グラフ推論(SPIN)モジュールを提案する。
論文 参考訳(メタデータ) (2021-09-16T03:52:17Z) - OpenPifPaf: Composite Fields for Semantic Keypoint Detection and
Spatio-Temporal Association [90.39247595214998]
イメージベースの知覚タスクは、例えば、検出、関連付け、セマンティックキーポイントとして定式化することができる。
人間の体は 推定と追跡をする
一つの段階における意味的および時間的キーポイント関連を共同で検出する一般的な枠組みを提案する。
また,本手法は車や動物などのキーポイントのクラスに一般化し,総合的な知覚の枠組みを提供することを示す。
論文 参考訳(メタデータ) (2021-03-03T14:44:14Z) - Spatiotemporal Graph Neural Network based Mask Reconstruction for Video
Object Segmentation [70.97625552643493]
本稿では,クラス非依存オブジェクトを半教師あり設定でセグメント化するタスクについて述べる。
提案手法のすべてを利用して局所的なコンテキストを捕捉する新しいグラフニューラルネットワーク(TG-Net)を提案する。
論文 参考訳(メタデータ) (2020-12-10T07:57:44Z) - Scribble-based Weakly Supervised Deep Learning for Road Surface
Extraction from Remote Sensing Images [7.1577508803778045]
そこで我々は,ScRoadExtractor という,スクリブルに基づく弱制御路面抽出手法を提案する。
スパーススクリブルからラベルなし画素への意味情報を伝達するために,道路ラベルの伝搬アルゴリズムを導入する。
道路ラベル伝搬アルゴリズムから生成された提案マスクを用いて、デュアルブランチエンコーダデコーダネットワークを訓練する。
論文 参考訳(メタデータ) (2020-10-25T12:40:30Z) - PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite
Imagery with Multi-stage Training [4.694536172504848]
道路網と建築物のフットプリント抽出は、地図の更新、交通規制、都市計画、ライドシェアリング、災害対応テキストテットックなど、多くのアプリケーションにとって不可欠である。
論文 参考訳(メタデータ) (2020-10-14T10:23:48Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。