Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee Osteoarthritis Detection
- URL: http://arxiv.org/abs/2302.13336v2
- Date: Wed, 15 Jan 2025 20:50:17 GMT
- Title: Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee Osteoarthritis Detection
- Authors: Zhe Wang, Aladine Chetouani, Mohamed Jarraya, Yung Hsin Chen, Yuhua Ru, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane,
- Abstract summary: Key-Exchange Convolutional Auto-Encoder (KECAE) is an AI-based data augmentation strategy for early KOA classification.
Our model employs a convolutional autoencoder with a novel key-exchange mechanism that generates synthetic images.
Experimental results demonstrate that the KECAE-generated data significantly improve the performance of KOA classification models.
- Score: 8.193689534916988
- License:
- Abstract: Knee Osteoarthritis (KOA) is a common musculoskeletal condition that significantly affects mobility and quality of life, particularly in elderly populations. However, training deep learning models for early KOA classification is often hampered by the limited availability of annotated medical datasets, owing to the high costs and labour-intensive nature of data labelling. Traditional data augmentation techniques, while useful, rely on simple transformations and fail to introduce sufficient diversity into the dataset. To address these challenges, we propose the Key-Exchange Convolutional Auto-Encoder (KECAE) as an innovative Artificial Intelligence (AI)-based data augmentation strategy for early KOA classification. Our model employs a convolutional autoencoder with a novel key-exchange mechanism that generates synthetic images by selectively exchanging key pathological features between X-ray images, which not only diversifies the dataset but also ensures the clinical validity of the augmented data. A hybrid loss function is introduced to supervise feature learning and reconstruction, integrating multiple components, including reconstruction, supervision, and feature separation losses. Experimental results demonstrate that the KECAE-generated data significantly improve the performance of KOA classification models, with accuracy gains of up to 1.98% across various standard and state-of-the-art architectures. Furthermore, a clinical validation study involving expert radiologists confirms the anatomical plausibility and diagnostic realism of the synthetic outputs. These findings highlight the potential of KECAE as a robust tool for augmenting medical datasets in early KOA detection.
Related papers
- Generalizable automated ischaemic stroke lesion segmentation with vision transformers [0.7400397057238803]
Diffusion-weighted imaging (DWI) provides the highest expressivity in ischemic stroke.
Current U-Net-based models therefore underperform, a problem accentuated by inadequate evaluation metrics.
Here, we present a high-performance DWI lesion segmentation tool addressing these challenges.
arXiv Detail & Related papers (2025-02-10T19:00:00Z) - Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering [6.196283036344105]
Osteoporosis is a common condition that increases fracture risk, especially in older adults.
This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability.
arXiv Detail & Related papers (2024-11-01T13:58:15Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Transformer with Selective Shuffled Position Embedding and Key-Patch
Exchange Strategy for Early Detection of Knee Osteoarthritis [7.656764569447645]
Knee OsteoArthritis (KOA) is a widespread musculoskeletal disorder that can severely impact the mobility of older individuals.
Insufficient medical data presents a significant obstacle for effectively training models due to the high cost associated with data labelling.
We propose a novel approach based on the Vision Transformer (ViT) model with original Selective Shuffled Position Embedding (SSPE) and key-patch exchange strategies.
arXiv Detail & Related papers (2023-04-17T15:26:42Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.