論文の概要: Finding Support Examples for In-Context Learning
- arxiv url: http://arxiv.org/abs/2302.13539v3
- Date: Mon, 9 Oct 2023 02:39:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 14:38:22.811320
- Title: Finding Support Examples for In-Context Learning
- Title(参考訳): コンテキスト内学習支援例の探索
- Authors: Xiaonan Li, Xipeng Qiu
- Abstract要約: 本稿では,この課題を2段階に解決するためのfilter-thEN-Search法であるLENSを提案する。
まず、データセットをフィルタリングして、個別に情報的インコンテキストの例を得る。
そこで本研究では,反復的に改良し,選択したサンプル順列を評価可能な多様性誘導型サンプル探索を提案する。
- 参考スコア(独自算出の注目度): 73.90376920653507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Additionally, the strong dependency among in-context examples makes it an
NP-hard combinatorial optimization problem and enumerating all permutations is
infeasible. Hence we propose LENS, a fiLter-thEN-Search method to tackle this
challenge in two stages: First we filter the dataset to obtain informative
in-context examples individually. Specifically, we propose a novel metric,
InfoScore, to evaluate the example's in-context informativeness based on the
language model's feedback, and further propose a progressive filtering process
to filter out uninformative examples. Then we propose diversity-guided example
search which iteratively refines and evaluates the selected example
permutations, to find examples that fully depict the task. The experimental
results show that LENS significantly outperforms a wide range of baselines.
- Abstract(参考訳): さらに、文脈内例間の強い依存により、NPハードな組合せ最適化問題となり、全ての置換を列挙することは不可能である。
そこで我々はlensを提案する。lensは,この課題を2つの段階で解決するためのフィルタ・サーチ手法である。
具体的には,言語モデルのフィードバックに基づいて,サンプルの文脈内情報度を評価するための新しい指標infoscoreを提案し,さらに不規則な例をフィルタリングするプログレッシブフィルタリング手法を提案する。
次に,選択されたサンプルの順列を反復的に洗練し,評価し,タスクを完全に表現した例を探索する。
実験結果から,LENSは幅広いベースラインよりも有意に優れていた。
関連論文リスト
- Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
本稿では,各復号工程における多様性とリスクのトレードオフを考慮し,トラクションサンプリング手法の本質的な能力を推定する体系的手法を提案する。
本研究は,既存のトラクションサンプリング手法の総合的な比較と,ユーザのガイドラインとして推奨されるパラメータについて紹介する。
論文 参考訳(メタデータ) (2024-08-24T14:14:32Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTrieverは、隠れた状態の重み付けを学習する新しいデモ検索フレームワークである。
提案手法は1ショットNL2タスクにおける最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-06-12T06:33:54Z) - Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis [7.458853474864602]
アスペクトベースの感情分析(ABSA)は、特定の側面に関連する感情情報を識別し、企業や組織に対してより深い市場洞察を提供する。
近年の研究では、ABSAを生成タスクとして再構成する命令チューニングの固定例が提案されている。
本研究では,ABSAタスクの検索に基づくサンプルランキングを用いた指導学習手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T10:39:10Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - Designing Informative Metrics for Few-Shot Example Selection [14.961505860372492]
本稿では,複雑性に基づく逐次タギングタスクのプロンプト選択手法を提案する。
このアプローチは、サンプルの選択専用のモデルのトレーニングを避ける。
文レベルと単語レベルの両方のメトリクスを用いて、例の複雑さと検討中の(テスト)文とを一致させる。
論文 参考訳(メタデータ) (2024-03-06T17:11:38Z) - $Se^2$: Sequential Example Selection for In-Context Learning [83.17038582333716]
インコンテキスト学習(ICL)のための大規模言語モデル(LLM)は、実演例によって起動する必要がある。
以前の研究は、主に"select then organize"パラダイムに従って、ICLの例の選択を幅広く検討してきた。
本稿では,この問題を$Se$quential $Se$lection問題として定式化し,シーケンシャル・アウェア法である$Se2$を導入する。
論文 参考訳(メタデータ) (2024-02-21T15:35:04Z) - IDEAL: Influence-Driven Selective Annotations Empower In-Context
Learners in Large Language Models [66.32043210237768]
本稿では,影響駆動型選択的アノテーション手法を提案する。
アノテーションのコストを最小限に抑えつつ、コンテキスト内サンプルの品質を向上させることを目的としている。
様々なベンチマークで提案手法の優位性を確認する実験を行った。
論文 参考訳(メタデータ) (2023-10-16T22:53:54Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。