The One-dimensional Chiral Anomaly and its Disorder Response
- URL: http://arxiv.org/abs/2302.13556v4
- Date: Sat, 9 Sep 2023 14:21:44 GMT
- Title: The One-dimensional Chiral Anomaly and its Disorder Response
- Authors: Zheng Qin, Dong-Hui Xu, Zhen Ning and Rui Wang
- Abstract summary: We show that one-dimensional (1D) chiral anomaly can be realized in a generalized Su-Schefferri-Heeger model.
We investigate the evolution of 1D chiral anomaly with respect to two typical types of disorder, i.e., on-site disorder and bond disorder.
- Score: 8.369118707440899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The condensed-matter realization of chiral anomaly has attracted tremendous
interest in exploring unexpected phenomena of quantum field theory. Here, we
show that one-dimensional (1D) chiral anomaly (i.e., 1D nonconservational
chiral current under a background electromagnetic field) can be realized in a
generalized Su-Schrieffer-Heeger model where a single gapless Dirac cone
occurs. Based on the topological Thouless pump and anomalous dynamics of chiral
displacement, we elucidate that such a system possesses the half-integer
quantization of winding number. Moreover, we investigate the evolution of 1D
chiral anomaly with respect to two typical types of disorder, i.e., on-site
disorder and bond disorder. The results show that the on-site disorder tends to
smear the gapless Dirac cone. However, we propose a strategy to stabilize the
half-integer quantization, facilitating its experimental detection.
Furthermore, we demonstrate that the bond disorder causes a unique crossover
with disorder-enhanced topological charge pumping, driving the system into a
topological Anderson insulator phase.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and van Hove Singularity [0.0]
We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice.
We demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary.
arXiv Detail & Related papers (2023-09-28T06:21:55Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties
and Nonlinear Semiclassical Dynamics [5.824077816472029]
We study a generalization of the recently introduced Dicke trimer model.
In the extreme unbalanced limit, the symmetry of the Tavis-Cummings model is restored.
We observe the emergence of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures.
arXiv Detail & Related papers (2023-03-21T11:23:18Z) - Pair localization in dipolar systems with tunable positional disorder [0.0]
We study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings.
We show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities.
arXiv Detail & Related papers (2022-07-29T04:31:47Z) - Chiral anomaly in (1+1) dimensions revisited: complementary kinetic
perspective and universality [0.6091702876917281]
We reinvestigate the classic example of chiral anomaly in (1+1) dimensional spacetime.
We argue that chiral anomalies could emerge in (1+1) dimensions without Berry curvature corrections to the kinetic theory.
arXiv Detail & Related papers (2022-01-08T15:16:06Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Ising chain with topological degeneracy induced by dissipation [0.0]
We study a non-Hermitian Ising chain with two transverse fields, one real and another imaginary, based on the exact solution and numerical simulation.
We show that topological degeneracy still exists and can be obtained by an imaginary transverse field from a topologically trivial phase of a Hermitian system.
arXiv Detail & Related papers (2020-03-18T03:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.