Ising chain with topological degeneracy induced by dissipation
- URL: http://arxiv.org/abs/2003.08029v2
- Date: Tue, 23 Jun 2020 00:44:59 GMT
- Title: Ising chain with topological degeneracy induced by dissipation
- Authors: K. L. Zhang, Z. Song
- Abstract summary: We study a non-Hermitian Ising chain with two transverse fields, one real and another imaginary, based on the exact solution and numerical simulation.
We show that topological degeneracy still exists and can be obtained by an imaginary transverse field from a topologically trivial phase of a Hermitian system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ground-state degeneracy of the quantum spin system is a characteristic of
nontrivial topology, when it is gapped and robust against disordered
perturbation. The corresponding quantum phase transition (QPT) is usually
driven by a real parameter. We study a non-Hermitian Ising chain with two
transverse fields, one real and another imaginary, based on the exact solution
and numerical simulation. We show that topological degeneracy still exists and
can be obtained by an imaginary transverse field from a topologically trivial
phase of a Hermitian system. The topological degeneracy is robust against the
random imaginary field and therefore expected to be immune to disordered
dissipation from the spontaneous decay in experiment. The underlying mechanism
is the nonlocal symmetry, which emerges only in thermodynamic limit and relates
two categories of QPTs in the quantum spin system, rooted from topological
order and symmetry breaking, respectively.
Related papers
- Emergent Topology in Many-Body Dissipative Quantum Matter [0.0]
We study the dissipative dynamics of pseudo-Hermitian many-body quantum systems.
We find the same topological features for a wide range of parameters suggesting that they are universal.
In the limit of weak coupling to the bath, topological modes govern the approach to equilibrium.
arXiv Detail & Related papers (2023-11-24T18:15:22Z) - Topologically Ordered Steady States in Open Quantum Systems [2.7811337602231214]
We study non-equilibrium phases of matter with robust topological degeneracy of steady states.
We find that while the degeneracy is fragile under noise in two dimensions, it is stable in three dimensions.
arXiv Detail & Related papers (2023-06-21T18:00:09Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Observation of a symmetry-protected topological phase in external
magnetic fields [1.4515101661933258]
We report the real-space observation of a symmetry-protected topological phase with interacting nuclear spins.
We probe the interaction-induced transition between two topologically distinct phases, both of which are classified by many-body Chern numbers.
Our findings enable direct characterization of topological features of quantum many-body states through gradually decreasing the strength of the introduced external fields.
arXiv Detail & Related papers (2022-08-10T14:08:01Z) - Shannon Entropy and Diffusion Coeffcient in Parity-Time Symmetric
Quantum Walks [5.3028918247347585]
The diffusion coefficient is found to show unique features with the topological phase transitions driven by paritytime( PT)-symmetric non-Hermitian discrete-time quantum walks.
The numerical results presented here may open up a new avenue for studying the topological state in Non-Hermitian quantum walk systems.
arXiv Detail & Related papers (2022-01-24T11:06:32Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Observation of non-Hermitian topological Anderson insulator in quantum
dynamics [8.119496606443793]
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system.
We experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks.
arXiv Detail & Related papers (2021-08-02T18:00:18Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.