Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution
- URL: http://arxiv.org/abs/2302.13800v1
- Date: Mon, 27 Feb 2023 14:19:31 GMT
- Title: Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution
- Authors: Long Sun, Jiangxin Dong, Jinhui Tang, Jinshan Pan
- Abstract summary: We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
- Score: 90.16462805389943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although numerous solutions have been proposed for image super-resolution,
they are usually incompatible with low-power devices with many computational
and memory constraints. In this paper, we address this problem by proposing a
simple yet effective deep network to solve image super-resolution efficiently.
In detail, we develop a spatially-adaptive feature modulation (SAFM) mechanism
upon a vision transformer (ViT)-like block. Within it, we first apply the SAFM
block over input features to dynamically select representative feature
representations. As the SAFM block processes the input features from a
long-range perspective, we further introduce a convolutional channel mixer
(CCM) to simultaneously extract local contextual information and perform
channel mixing. Extensive experimental results show that the proposed method is
$3\times$ smaller than state-of-the-art efficient SR methods, e.g., IMDN, in
terms of the network parameters and requires less computational cost while
achieving comparable performance. The code is available at
https://github.com/sunny2109/SAFMN.
Related papers
- UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration [4.068692674719378]
Complicated image registration is a key issue in medical image analysis.
We propose a novel unsupervised image registration method named the unified Transformer and superresolution (UTSRMorph) network.
arXiv Detail & Related papers (2024-10-27T06:28:43Z) - WaterMamba: Visual State Space Model for Underwater Image Enhancement [17.172623370407155]
Underwater imaging often suffers from low quality due to factors affecting light propagation and absorption in water.
To improve image quality, some underwater image enhancement (UIE) methods based on convolutional neural networks (CNN) and Transformer have been proposed.
Considering computational complexity and severe underwater image degradation, a state space model (SSM) with linear computational complexity for UIE, named WaterMamba, is proposed.
arXiv Detail & Related papers (2024-05-14T08:26:29Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - ShuffleMixer: An Efficient ConvNet for Image Super-Resolution [88.86376017828773]
We propose ShuffleMixer, for lightweight image super-resolution that explores large convolution and channel split-shuffle operation.
Specifically, we develop a large depth-wise convolution and two projection layers based on channel splitting and shuffling as the basic component to mix features efficiently.
Experimental results demonstrate that the proposed ShuffleMixer is about 6x smaller than the state-of-the-art methods in terms of model parameters and FLOPs.
arXiv Detail & Related papers (2022-05-30T15:26:52Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.