WaterMamba: Visual State Space Model for Underwater Image Enhancement
- URL: http://arxiv.org/abs/2405.08419v1
- Date: Tue, 14 May 2024 08:26:29 GMT
- Title: WaterMamba: Visual State Space Model for Underwater Image Enhancement
- Authors: Meisheng Guan, Haiyong Xu, Gangyi Jiang, Mei Yu, Yeyao Chen, Ting Luo, Yang Song,
- Abstract summary: Underwater imaging often suffers from low quality due to factors affecting light propagation and absorption in water.
To improve image quality, some underwater image enhancement (UIE) methods based on convolutional neural networks (CNN) and Transformer have been proposed.
Considering computational complexity and severe underwater image degradation, a state space model (SSM) with linear computational complexity for UIE, named WaterMamba, is proposed.
- Score: 17.172623370407155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater imaging often suffers from low quality due to factors affecting light propagation and absorption in water. To improve image quality, some underwater image enhancement (UIE) methods based on convolutional neural networks (CNN) and Transformer have been proposed. However, CNN-based UIE methods are limited in modeling long-range dependencies, and Transformer-based methods involve a large number of parameters and complex self-attention mechanisms, posing efficiency challenges. Considering computational complexity and severe underwater image degradation, a state space model (SSM) with linear computational complexity for UIE, named WaterMamba, is proposed. We propose spatial-channel omnidirectional selective scan (SCOSS) blocks comprising spatial-channel coordinate omnidirectional selective scan (SCCOSS) modules and a multi-scale feedforward network (MSFFN). The SCOSS block models pixel and channel information flow, addressing dependencies. The MSFFN facilitates information flow adjustment and promotes synchronized operations within SCCOSS modules. Extensive experiments showcase WaterMamba's cutting-edge performance with reduced parameters and computational resources, outperforming state-of-the-art methods on various datasets, validating its effectiveness and generalizability. The code will be released on GitHub after acceptance.
Related papers
- O-Mamba: O-shape State-Space Model for Underwater Image Enhancement [7.930262011501752]
Mamba-based methods have achieved promising results in image enhancement tasks.
O-mamba employs an O-shaped dual-branch network to separately model spatial and cross-channel information.
MS-MoE for fusing multi-scale information within branches, Mutual Promotion module for interaction between spatial and channel information across branches, and Cyclic Multi-scale optimization strategy.
arXiv Detail & Related papers (2024-08-23T03:33:33Z) - Image Deraining with Frequency-Enhanced State Space Model [2.9465623430708905]
This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM)
We develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively.
Experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-05-26T07:45:12Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration [7.292363114816646]
We introduce the Channel-Aware U-Shaped Mamba model, which incorporates a dual State Space Model framework into the U-Net architecture.
Experiments validate CU-Mamba's superiority over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-04-17T22:02:22Z) - VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
We propose VmambaIR, which introduces State Space Models (SSMs) with linear complexity into comprehensive image restoration tasks.
VmambaIR achieves state-of-the-art (SOTA) performance with much fewer computational resources and parameters.
arXiv Detail & Related papers (2024-03-18T02:38:55Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
Most existing neural image compression methods rely on side information from hyperprior or context models to eliminate spatial redundancy.
Inspired by the mask sampling modeling in recent self-supervised learning methods for natural language processing and high-level vision, we propose a novel pretraining strategy for neural image compression.
Our method achieves competitive performance with lower computational complexity compared to state-of-the-art image compression methods.
arXiv Detail & Related papers (2023-06-09T06:50:20Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
arXiv Detail & Related papers (2023-02-27T14:19:31Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.