Adapting Pre-trained Language Models for Quantum Natural Language
Processing
- URL: http://arxiv.org/abs/2302.13812v1
- Date: Fri, 24 Feb 2023 14:59:02 GMT
- Title: Adapting Pre-trained Language Models for Quantum Natural Language
Processing
- Authors: Qiuchi Li, Benyou Wang, Yudong Zhu, Christina Lioma and Qun Liu
- Abstract summary: We show that pre-trained representation can bring 50% to 60% increases to the capacity of end-to-end quantum models.
On quantum simulation experiments, the pre-trained representation can bring 50% to 60% increases to the capacity of end-to-end quantum models.
- Score: 33.86835690434712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emerging classical-quantum transfer learning paradigm has brought a
decent performance to quantum computational models in many tasks, such as
computer vision, by enabling a combination of quantum models and classical
pre-trained neural networks. However, using quantum computing with pre-trained
models has yet to be explored in natural language processing (NLP). Due to the
high linearity constraints of the underlying quantum computing infrastructures,
existing Quantum NLP models are limited in performance on real tasks. We fill
this gap by pre-training a sentence state with complex-valued BERT-like
architecture, and adapting it to the classical-quantum transfer learning scheme
for sentence classification. On quantum simulation experiments, the pre-trained
representation can bring 50\% to 60\% increases to the capacity of end-to-end
quantum models.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train [18.138290778243075]
We apply the Quantum-Train method to reinforcement learning tasks, called QTRL, training the classical policy network model.
The training result of the QTRL is a classical model, meaning the inference stage only requires classical computer.
arXiv Detail & Related papers (2024-07-08T16:41:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - Shadows of quantum machine learning [2.236957801565796]
We introduce a new class of quantum models where quantum resources are only required during training, while the deployment of the trained model is classical.
We prove that this class of models is universal for classically-deployed quantum machine learning.
arXiv Detail & Related papers (2023-05-31T18:00:02Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
This material includes the results of experiments on training and performance of a hybrid quantum-classical neural network.
Although its simulation is time-consuming, the quantum network, although its simulation is time-consuming, overcomes the classical network.
arXiv Detail & Related papers (2021-08-19T18:49:30Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.