Classical-to-quantum convolutional neural network transfer learning
- URL: http://arxiv.org/abs/2208.14708v2
- Date: Thu, 28 Sep 2023 15:34:03 GMT
- Title: Classical-to-quantum convolutional neural network transfer learning
- Authors: Juhyeon Kim, Joonsuk Huh, Daniel K. Park
- Abstract summary: Machine learning using quantum convolutional neural networks (QCNNs) has demonstrated success in both quantum and classical data classification.
We propose transfer learning as an effective strategy for utilizing small QCNNs in the noisy intermediate-scale quantum era.
- Score: 1.9336815376402723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning using quantum convolutional neural networks (QCNNs) has
demonstrated success in both quantum and classical data classification. In
previous studies, QCNNs attained a higher classification accuracy than their
classical counterparts under the same training conditions in the few-parameter
regime. However, the general performance of large-scale quantum models is
difficult to examine because of the limited size of quantum circuits, which can
be reliably implemented in the near future. We propose transfer learning as an
effective strategy for utilizing small QCNNs in the noisy intermediate-scale
quantum era to the full extent. In the classical-to-quantum transfer learning
framework, a QCNN can solve complex classification problems without requiring a
large-scale quantum circuit by utilizing a pre-trained classical convolutional
neural network (CNN). We perform numerical simulations of QCNN models with
various sets of quantum convolution and pooling operations for MNIST data
classification under transfer learning, in which a classical CNN is trained
with Fashion-MNIST data. The results show that transfer learning from classical
to quantum CNN performs considerably better than purely classical transfer
learning models under similar training conditions.
Related papers
- Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
We prove that a classical-to-quantum transfer learning architecture using a Variational Quantum Circuit (VQC) improves the representation and generalization (estimation error) capabilities of the VQC model.
We show that the architecture of classical-to-quantum transfer learning leverages pre-trained classical generative AI models, making it easier to find the optimal parameters for the VQC in the training stage.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - QuCNN : A Quantum Convolutional Neural Network with Entanglement Based
Backpropagation [9.760266670459446]
QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state.
Back propagation can be achieved through a single-ancillabit quantum routine.
validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images.
arXiv Detail & Related papers (2022-10-11T13:36:15Z) - Classical-to-Quantum Transfer Learning for Spoken Command Recognition
Based on Quantum Neural Networks [13.485144642413907]
This work investigates an extension of transfer learning applied in machine learning algorithms to the emerging hybrid end-to-end quantum neural network (QNN) for spoken command recognition (SCR)
We put forth a hybrid transfer learning algorithm that allows a pre-trained classical network to be transferred to the classical part of the hybrid QNN model.
We assess the hybrid transfer learning algorithm applied to the hybrid classical-quantum QNN for SCR on the Google speech command dataset.
arXiv Detail & Related papers (2021-10-17T00:45:31Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
This material includes the results of experiments on training and performance of a hybrid quantum-classical neural network.
Although its simulation is time-consuming, the quantum network, although its simulation is time-consuming, overcomes the classical network.
arXiv Detail & Related papers (2021-08-19T18:49:30Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.