Denoising Diffusion Samplers
- URL: http://arxiv.org/abs/2302.13834v2
- Date: Wed, 16 Aug 2023 21:40:47 GMT
- Title: Denoising Diffusion Samplers
- Authors: Francisco Vargas, Will Grathwohl, Arnaud Doucet
- Abstract summary: Denoising diffusion models are a popular class of generative models providing state-of-the-art results in many domains.
We explore a similar idea to sample approximately from unnormalized probability density functions and estimate their normalizing constants.
While score matching is not applicable in this context, we can leverage many of the ideas introduced in generative modeling for Monte Carlo sampling.
- Score: 41.796349001299156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion models are a popular class of generative models providing
state-of-the-art results in many domains. One adds gradually noise to data
using a diffusion to transform the data distribution into a Gaussian
distribution. Samples from the generative model are then obtained by simulating
an approximation of the time-reversal of this diffusion initialized by Gaussian
samples. Practically, the intractable score terms appearing in the
time-reversed process are approximated using score matching techniques. We
explore here a similar idea to sample approximately from unnormalized
probability density functions and estimate their normalizing constants. We
consider a process where the target density diffuses towards a Gaussian.
Denoising Diffusion Samplers (DDS) are obtained by approximating the
corresponding time-reversal. While score matching is not applicable in this
context, we can leverage many of the ideas introduced in generative modeling
for Monte Carlo sampling. Existing theoretical results from denoising diffusion
models also provide theoretical guarantees for DDS. We discuss the connections
between DDS, optimal control and Schr\"odinger bridges and finally demonstrate
DDS experimentally on a variety of challenging sampling tasks.
Related papers
- Particle Denoising Diffusion Sampler [32.310922004771776]
Particle Denoising Diffusion Sampler (PDDS) provides consistent estimates under mild assumptions.
We demonstrate PDDS on multimodal and high dimensional sampling tasks.
arXiv Detail & Related papers (2024-02-09T11:01:35Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
We show that current diffusion models actually have an expressive bottleneck in backward denoising.
We introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising.
arXiv Detail & Related papers (2023-09-25T12:03:32Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
We develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process.
As an example, we introduce Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise.
arXiv Detail & Related papers (2023-05-18T16:24:12Z) - To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models [20.315727650065007]
Denoising diffusion models are a class of generative models which have recently achieved state-of-the-art results across many domains.
We leverage known connections to control akin to the F"ollmer drift to extend established neural network approximation results for the F"ollmer drift to denoising diffusion models and samplers.
arXiv Detail & Related papers (2023-05-16T16:56:19Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance.
We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching.
arXiv Detail & Related papers (2022-11-07T14:34:27Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.