Fast Inference in Denoising Diffusion Models via MMD Finetuning
- URL: http://arxiv.org/abs/2301.07969v1
- Date: Thu, 19 Jan 2023 09:48:07 GMT
- Title: Fast Inference in Denoising Diffusion Models via MMD Finetuning
- Authors: Emanuele Aiello, Diego Valsesia, Enrico Magli
- Abstract summary: We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
- Score: 23.779985842891705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Denoising Diffusion Models (DDMs) have become a popular tool for generating
high-quality samples from complex data distributions. These models are able to
capture sophisticated patterns and structures in the data, and can generate
samples that are highly diverse and representative of the underlying
distribution. However, one of the main limitations of diffusion models is the
complexity of sample generation, since a large number of inference timesteps is
required to faithfully capture the data distribution. In this paper, we present
MMD-DDM, a novel method for fast sampling of diffusion models. Our approach is
based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the
learned distribution with a given budget of timesteps. This allows the
finetuned model to significantly improve the speed-quality trade-off, by
substantially increasing fidelity in inference regimes with few steps or,
equivalently, by reducing the required number of steps to reach a target
fidelity, thus paving the way for a more practical adoption of diffusion models
in a wide range of applications. We evaluate our approach on unconditional
image generation with extensive experiments across the CIFAR-10, CelebA,
ImageNet and LSUN-Church datasets. Our findings show that the proposed method
is able to produce high-quality samples in a fraction of the time required by
widely-used diffusion models, and outperforms state-of-the-art techniques for
accelerated sampling. Code is available at:
https://github.com/diegovalsesia/MMD-DDM.
Related papers
- Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Diffusion Rejection Sampling [13.945372555871414]
Diffusion Rejection Sampling (DiffRS) is a rejection sampling scheme that aligns the sampling transition kernels with the true ones at each timestep.
The proposed method can be viewed as a mechanism that evaluates the quality of samples at each intermediate timestep and refines them with varying effort depending on the sample.
Empirical results demonstrate the state-of-the-art performance of DiffRS on the benchmark datasets and the effectiveness of DiffRS for fast diffusion samplers and large-scale text-to-image diffusion models.
arXiv Detail & Related papers (2024-05-28T07:00:28Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
Diffusion models rely on the current sample to denoise the next one, possibly resulting in denoising instability.
In this paper, we reinterpret the iterative denoising process as model optimization and leverage a moving average mechanism to ensemble all the prior samples.
We name the complete approach "Moving Average Sampling in Frequency domain (MASF)"
arXiv Detail & Related papers (2024-03-26T16:57:55Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
We propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation.
Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Neural Diffusion Models [2.1779479916071067]
We present a generalization of conventional diffusion models that enables defining and learning time-dependent non-linear transformations of data.
NDMs outperform conventional diffusion models in terms of likelihood and produce high-quality samples.
arXiv Detail & Related papers (2023-10-12T13:54:55Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Denoising Diffusion Samplers [41.796349001299156]
Denoising diffusion models are a popular class of generative models providing state-of-the-art results in many domains.
We explore a similar idea to sample approximately from unnormalized probability density functions and estimate their normalizing constants.
While score matching is not applicable in this context, we can leverage many of the ideas introduced in generative modeling for Monte Carlo sampling.
arXiv Detail & Related papers (2023-02-27T14:37:16Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.