論文の概要: TwERC: High Performance Ensembled Candidate Generation for Ads
Recommendation at Twitter
- arxiv url: http://arxiv.org/abs/2302.13915v2
- Date: Fri, 14 Apr 2023 02:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 16:17:55.605067
- Title: TwERC: High Performance Ensembled Candidate Generation for Ads
Recommendation at Twitter
- Title(参考訳): TwERC: Twitterにおける広告推薦のための高性能アンサンブル候補生成
- Authors: Vanessa Cai, Pradeep Prabakar, Manuel Serrano Rebuelta, Lucas Rosen,
Federico Monti, Katarzyna Janocha, Tomo Lazovich, Jeetu Raj, Yedendra
Shrinivasan, Hao Li, Thomas Markovich
- Abstract要約: 我々は,大規模広告推薦問題の候補生成段階に着目する。
本稿では,リアルタイムのライトローダと,追加情報を取得することができるソーシング戦略を組み合わせることで,有効性が得られることを示す。
- 参考スコア(独自算出の注目度): 5.843970876466131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation systems are a core feature of social media companies with
their uses including recommending organic and promoted contents. Many modern
recommendation systems are split into multiple stages - candidate generation
and heavy ranking - to balance computational cost against recommendation
quality. We focus on the candidate generation phase of a large-scale ads
recommendation problem in this paper, and present a machine learning first
heterogeneous re-architecture of this stage which we term TwERC. We show that a
system that combines a real-time light ranker with sourcing strategies capable
of capturing additional information provides validated gains. We present two
strategies. The first strategy uses a notion of similarity in the interaction
graph, while the second strategy caches previous scores from the ranking stage.
The graph based strategy achieves a 4.08% revenue gain and the rankscore based
strategy achieves a 1.38% gain. These two strategies have biases that
complement both the light ranker and one another. Finally, we describe a set of
metrics that we believe are valuable as a means of understanding the complex
product trade offs inherent in industrial candidate generation systems.
- Abstract(参考訳): レコメンデーションシステムは、オーガニックコンテンツやプロモーションコンテンツなど、ソーシャルメディア企業の中核的な機能である。
現代のレコメンデーションシステムの多くは、推薦品質と計算コストのバランスをとるために、候補生成と高いランキングの複数のステージに分けられている。
本稿では,大規模広告レコメンデーション問題の候補生成段階に注目し,twercと呼ばれるこの段階を,機械学習第1次不均質な再構築を行う。
本研究では,リアルタイム光ランカとソーシング戦略を組み合わせたシステムにより,さらなる情報収集が可能となることを示す。
我々は2つの戦略を提示する。
第1の戦略は相互作用グラフにおける類似性の概念を使用し、第2の戦略はランキングステージから前のスコアをキャッシュする。
グラフベースの戦略は収益の4.08%を達成し、ランクコアベースの戦略は1.38%を達成している。
これら2つの戦略は、光ランクと互いに補完するバイアスを持つ。
最後に、産業候補生成システム固有の複雑な製品トレードオフを理解する手段として価値があると考える指標のセットについて述べる。
関連論文リスト
- Expert with Clustering: Hierarchical Online Preference Learning Framework [4.05836962263239]
Expert with Clustering (EWC)は、クラスタリングのテクニックと予測を専門家のアドバイスと統合した階層的なコンテキスト的バンディットフレームワークである。
EWCはLinUCBベースラインと比較して後悔を27.57%減らすことができる。
論文 参考訳(メタデータ) (2024-01-26T18:44:49Z) - Criteria Tell You More than Ratings: Criteria Preference-Aware Light
Graph Convolution for Effective Multi-Criteria Recommendation [5.536402965666082]
我々は,GNN支援MCレコメンデータシステムを設計するための最初の試みを行う。
具体的には,光グラフ畳み込みCPA-LGC法を考案した。
この目的のために、まず、MC評価を拡張二部グラフに変換するMC拡張グラフを構築する。
次に、CPA-LGCは、基準優先意識の能力を強化するために、新しく特徴付けられた埋め込みを取り入れている。
論文 参考訳(メタデータ) (2023-05-30T09:27:36Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
最適性能を達成しつつエージェントのインセンティブと整合する新しいレコメンデータシステムを提案する。
我々のフレームワークは、このインセンティブを意識したシステムを、両側市場におけるマルチエージェントバンディット問題としてモデル化する。
どちらのアルゴリズムも、エージェントが過剰な露出から保護する、ポストフェアネス基準を満たす。
論文 参考訳(メタデータ) (2022-11-23T22:20:12Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Multi-Agent Reinforcement Learning with Graph Convolutional Neural
Networks for optimal Bidding Strategies of Generation Units in Electricity
Markets [1.370633147306388]
本稿では,深部強化学習(DRL)とグラフ畳み込みニューラルネットワーク(GCN)に基づく分散学習アルゴリズムを提案する。
ノード間の状態と接続はGCNの入力であり、エージェントはシステムの構造を認識することができる。
IEEE 30-busシステムにおける提案アルゴリズムを,異なるシナリオで評価する。
論文 参考訳(メタデータ) (2022-08-11T09:29:31Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
我々は、主に良いアイテムを含むことを厳格に保証されたアイテムのセットを返す方法を示す。
本手法は, 擬似発見率の厳密な有限サンプル制御によるランキングモデルを提供する。
我々はYahoo!のランキングとMSMarcoデータセットの学習方法を評価する。
論文 参考訳(メタデータ) (2022-07-04T17:49:25Z) - Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased
Scene Graph Generation [62.96628432641806]
Scene Graph Generationは、まず与えられた画像内の視覚的コンテンツをエンコードし、次にそれらをコンパクトな要約グラフに解析することを目的としている。
まず,モーダル内改良とモーダル間相互作用を容易にする新しいスタック型ハイブリッド・アテンションネットワークを提案する。
次に、デコーダを最適化するための革新的なグループ協調学習戦略を考案する。
論文 参考訳(メタデータ) (2022-03-18T09:14:13Z) - On component interactions in two-stage recommender systems [82.38014314502861]
2段階のレコメンデータは、YouTube、LinkedIn、Pinterestなど、多くのオンラインプラットフォームで使用されている。
ランク付け器と評価器の相互作用が全体の性能に大きく影響していることが示される。
特に、Mixture-of-Expertsアプローチを用いて、アイテムプールの異なるサブセットに特化するように、ノミネータを訓練する。
論文 参考訳(メタデータ) (2021-06-28T20:53:23Z) - Exploration in two-stage recommender systems [79.50534282841618]
2段階のレコメンデータシステムは、スケーラビリティと保守性のために業界で広く採用されている。
このセットアップの鍵となる課題は、各ステージの最適性能が最適なグローバルパフォーマンスを暗示していないことである。
そこで本研究では,ランクとノミネーター間の探索戦略を同期させる手法を提案する。
論文 参考訳(メタデータ) (2020-09-01T16:52:51Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。