論文の概要: Inseq: An Interpretability Toolkit for Sequence Generation Models
- arxiv url: http://arxiv.org/abs/2302.13942v3
- Date: Sat, 27 May 2023 09:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 01:30:04.416296
- Title: Inseq: An Interpretability Toolkit for Sequence Generation Models
- Title(参考訳): Inseq:シーケンス生成モデルのための解釈可能性ツールキット
- Authors: Gabriele Sarti, Nils Feldhus, Ludwig Sickert, Oskar van der Wal,
Malvina Nissim, Arianna Bisazza
- Abstract要約: Inseqは、シーケンス生成モデルの解釈可能性解析へのアクセスを民主化するPythonライブラリである。
Inseqはモデルの内部情報の直感的で最適化された抽出を可能にする。
機械翻訳モデルにおいて、性別バイアスを強調するために採用する可能性を示す。
- 参考スコア(独自算出の注目度): 9.669793802289366
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Past work in natural language processing interpretability focused mainly on
popular classification tasks while largely overlooking generation settings,
partly due to a lack of dedicated tools. In this work, we introduce Inseq, a
Python library to democratize access to interpretability analyses of sequence
generation models. Inseq enables intuitive and optimized extraction of models'
internal information and feature importance scores for popular decoder-only and
encoder-decoder Transformers architectures. We showcase its potential by
adopting it to highlight gender biases in machine translation models and locate
factual knowledge inside GPT-2. Thanks to its extensible interface supporting
cutting-edge techniques such as contrastive feature attribution, Inseq can
drive future advances in explainable natural language generation, centralizing
good practices and enabling fair and reproducible model evaluations.
- Abstract(参考訳): 自然言語処理における過去の作業 解釈性は、主に一般的な分類タスクに重点を置いていたが、一部は専用のツールの欠如による生成設定をほとんど見落としていた。
本稿では,シーケンス生成モデルの解釈可能性解析へのアクセスを民主化するpythonライブラリであるinseqを紹介する。
inseqは、一般的なデコーダオンリーおよびエンコーダデコーダトランスフォーマーアーキテクチャのための、モデルの内部情報の直感的かつ最適化された抽出を可能にする。
機械翻訳モデルにおいて,ジェンダーバイアスを強調表示し,GPT-2内部の事実的知識を特定することで,その可能性を示す。
対照的な特徴帰属のような最先端技術をサポートする拡張可能なインターフェースのおかげで、inseqは、説明可能な自然言語生成の将来の進歩を促進し、良い実践を集中させ、公平で再現可能なモデル評価を可能にする。
関連論文リスト
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - Beyond Self-learned Attention: Mitigating Attention Bias in
Transformer-based Models Using Attention Guidance [9.486558126032639]
SyntaGuidはトランスフォーマーベースのモデルを重要なソースコードトークンへ導くための新しいアプローチである。
SyntaGuidは、全体的なパフォーマンスを3.25%改善し、28.3%の誤予測を修正できることを示す。
論文 参考訳(メタデータ) (2024-02-26T18:03:50Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - An Overview on Controllable Text Generation via Variational
Auto-Encoders [15.97186478109836]
ニューラルベース生成モデリングの最近の進歩は、コンピュータシステムが人間と会話できるという期待を再燃させた。
変分自動エンコーダ(VAE)のような潜在変数モデル(LVM)は、テキストデータの分布パターンを特徴付けるように設計されている。
この概要は、既存の生成方式、テキスト変分自動エンコーダに関連する問題、および制御可能な生成に関するいくつかのアプリケーションについて概説する。
論文 参考訳(メタデータ) (2022-11-15T07:36:11Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
ELEVATERは、事前訓練された言語拡張ビジュアルモデルの比較と評価を行う最初のベンチマークである。
20の画像分類データセットと35のオブジェクト検出データセットで構成され、それぞれが外部知識で拡張されている。
研究コミュニティ向けのツールキットと評価プラットフォームをリリースします。
論文 参考訳(メタデータ) (2022-04-19T10:23:42Z) - Topical Language Generation using Transformers [4.795530213347874]
本稿では,事前学習したLMとトピックモデリング情報を組み合わせることで,トピック言語生成(TLG)の新しいアプローチを提案する。
我々は,新しいパラメータと関数を導入して,生成したテキストに提示される話題特徴量に影響を与えるモデルを拡張する。
実験結果から,復号化の高速化とともに,コヒーレンシー,多様性,流線型性の向上が得られた。
論文 参考訳(メタデータ) (2021-03-11T03:45:24Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。