Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets
- URL: http://arxiv.org/abs/2211.07645v1
- Date: Mon, 14 Nov 2022 01:29:09 GMT
- Title: Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets
- Authors: Yuzhou Chen, Tian Jiang, Miguel Heleno, Alexandre Moreira, Yulia R.
Gel
- Abstract summary: We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
- Score: 74.51865676466056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, it is broadly recognized in the power system community that to meet
the ever expanding energy sector's needs, it is no longer possible to rely
solely on physics-based models and that reliable, timely and sustainable
operation of energy systems is impossible without systematic integration of
artificial intelligence (AI) tools. Nevertheless, the adoption of AI in power
systems is still limited, while integration of AI particularly into
distribution grid investment planning is still an uncharted territory. We make
the first step forward to bridge this gap by showing how graph convolutional
networks coupled with the hyperstructures representation learning framework can
be employed for accurate, reliable, and computationally efficient distribution
grid planning with resilience objectives. We further propose a Hyperstructures
Graph Convolutional Neural Networks (Hyper-GCNNs) to capture hidden higher
order representations of distribution networks with attention mechanism. Our
numerical experiments show that the proposed Hyper-GCNNs approach yields
substantial gains in computational efficiency compared to the prevailing
methodology in distribution grid planning and also noticeably outperforms seven
state-of-the-art models from deep learning (DL) community.
Related papers
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
The present thesis first develops principled methods to make generic machine learning models robust against distributional uncertainties and adversarial data.
We then build on this robust framework to design robust semi-supervised learning over graph methods.
The second part of this thesis aspires to fully unleash the potential of next-generation wired and wireless networks.
arXiv Detail & Related papers (2022-02-08T05:49:06Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
We propose a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs)
The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality.
Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services.
arXiv Detail & Related papers (2021-03-12T13:00:01Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
arXiv Detail & Related papers (2020-12-29T18:59:14Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Graph Neural Networks for Leveraging Industrial Equipment Structure: An
application to Remaining Useful Life Estimation [21.297461316329453]
We propose to capture the structure of a complex equipment in the form of a graph, and use graph neural networks (GNNs) to model multi-sensor time-series data.
We observe that the proposed GNN-based RUL estimation model compares favorably to several strong baselines from literature such as those based on RNNs and CNNs.
arXiv Detail & Related papers (2020-06-30T06:38:08Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.