論文の概要: Efficient Masked Autoencoders with Self-Consistency
- arxiv url: http://arxiv.org/abs/2302.14431v2
- Date: Mon, 3 Jun 2024 11:06:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 23:35:51.786563
- Title: Efficient Masked Autoencoders with Self-Consistency
- Title(参考訳): 自己整合性を有する効率的なマスク付きオートエンコーダ
- Authors: Zhaowen Li, Yousong Zhu, Zhiyang Chen, Wei Li, Chaoyang Zhao, Rui Zhao, Ming Tang, Jinqiao Wang,
- Abstract要約: マスク付き画像モデリング(MIM)はコンピュータビジョンにおける強力な自己教師付き事前学習手法として認識されている。
本研究では,自己整合性(EMAE)を有する効率的なマスク付きオートエンコーダを提案し,事前学習効率を向上させる。
EMAEは、画像分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな下流タスクにおける最先端の転送能力を一貫して取得する。
- 参考スコア(独自算出の注目度): 34.7076436760695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the masked language modeling (MLM) in natural language processing tasks, the masked image modeling (MIM) has been recognized as a strong self-supervised pre-training method in computer vision. However, the high random mask ratio of MIM results in two serious problems: 1) the inadequate data utilization of images within each iteration brings prolonged pre-training, and 2) the high inconsistency of predictions results in unreliable generations, $i.e.$, the prediction of the identical patch may be inconsistent in different mask rounds, leading to divergent semantics in the ultimately generated outcomes. To tackle these problems, we propose the efficient masked autoencoders with self-consistency (EMAE) to improve the pre-training efficiency and increase the consistency of MIM. In particular, we present a parallel mask strategy that divides the image into K non-overlapping parts, each of which is generated by a random mask with the same mask ratio. Then the MIM task is conducted parallelly on all parts in an iteration and the model minimizes the loss between the predictions and the masked patches. Besides, we design the self-consistency learning to further maintain the consistency of predictions of overlapping masked patches among parts. Overall, our method is able to exploit the data more efficiently and obtains reliable representations. Experiments on ImageNet show that EMAE achieves the best performance on ViT-Large with only 13% of MAE pre-training time using NVIDIA A100 GPUs. After pre-training on diverse datasets, EMAE consistently obtains state-of-the-art transfer ability on a variety of downstream tasks, such as image classification, object detection, and semantic segmentation.
- Abstract(参考訳): 自然言語処理タスクにおけるマスク付き言語モデリング(MLM)に触発されて、マスク付き画像モデリング(MIM)はコンピュータビジョンにおける強力な自己教師付き事前学習手法として認識されている。
しかし、MIMの高ランダムマスク比は2つの深刻な問題をもたらす。
1) 各イテレーションにおける画像の不適切なデータ利用は、長期間の事前学習をもたらし、
2) 予測の不整合度が高いと、信頼性の低い世代、すなわち$は、同一のパッチの予測が異なるマスクラウンドで矛盾し、最終的に生成された結果において異なる意味論をもたらす可能性がある。
これらの問題に対処するために,自己整合性を有する効率的なマスク付きオートエンコーダを提案し,事前学習効率の向上とMIMの整合性の向上を図る。
特に,画像をK個の非重なり部分に分割し,それぞれが同じマスク比のランダムマスクによって生成されるパラレルマスク戦略を提案する。
そして、MIMタスクをイテレーション中のすべての部分に並列に実行し、予測とマスクされたパッチの間の損失を最小限に抑える。
さらに,部分間の重なり合うパッチの予測の一貫性をさらに維持するために,自己整合性学習を設計する。
全体として,本手法はより効率的にデータを利用でき,信頼性の高い表現が得られる。
ImageNetの実験によると、EMAEはNVIDIA A100 GPUを使用したMAE事前トレーニング時間のわずか13%で、ViT-Large上で最高のパフォーマンスを達成する。
多様なデータセットを事前トレーニングした後、EMAEは、画像分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな下流タスクにおける最先端の転送能力を一貫して取得する。
関連論文リスト
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
画像領域における視覚変換器(ViT)のコントラスト学習(CL)は、従来の畳み込みバックボーンのCLに匹敵する性能を達成した。
ViTで事前訓練した3Dポイントクラウドでは、マスク付きオートエンコーダ(MAE)モデリングが主流である。
論文 参考訳(メタデータ) (2024-07-08T12:28:56Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer
Pre-Training [59.923672191632065]
我々はMasked and Permuted Vision Transformer(MaPeT)という自己教師型事前学習手法を提案する。
MaPeTは、自動回帰および置換予測を使用して、パッチ内依存関係をキャプチャする。
以上の結果から,MaPeTはImageNet上での競合性能を実証した。
論文 参考訳(メタデータ) (2023-06-12T18:12:19Z) - Mixed Autoencoder for Self-supervised Visual Representation Learning [95.98114940999653]
Masked Autoencoder (MAE) は、画像パッチと再構成をランダムにマスキングすることで、様々な視覚タスクにおいて優れた性能を示す。
本稿では,MAEのミキシング強化について検討する。
論文 参考訳(メタデータ) (2023-03-30T05:19:43Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - Disjoint Masking with Joint Distillation for Efficient Masked Image
Modeling [36.231030262831005]
Masked Image Modeling (MIM) は自己教師型学習 (SSL) に大きく貢献している。
DMJD(Disjoint Masking with Joint Distillation)と呼ばれる,概念的にシンプルだが学習効率のよいMIMトレーニングスキームを導入する。
論文 参考訳(メタデータ) (2022-12-31T15:50:02Z) - How Mask Matters: Towards Theoretical Understandings of Masked
Autoencoders [21.849681446573257]
再構成タスクに基づくマスケ自動エンコーダ(MAE)は、自己教師型学習(SSL)の有望なパラダイムになってきた。
本稿では,MAEが意味のある特徴を学習する上で,マスキングがいかに重要であるかを理論的に理解する。
論文 参考訳(メタデータ) (2022-10-15T17:36:03Z) - Masked Autoencoders Are Scalable Vision Learners [60.97703494764904]
Masked Autoencoders (MAE) は、コンピュータビジョンのためのスケーラブルな自己教師型学習システムである。
我々は入力画像のランダムなパッチを隠蔽し、欠落したピクセルを再構成する。
これら2つの設計を結合することで,大規模モデルを効率的かつ効率的にトレーニングすることが可能になります。
論文 参考訳(メタデータ) (2021-11-11T18:46:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。