Reproducing kernel Hilbert spaces in the mean field limit
- URL: http://arxiv.org/abs/2302.14446v1
- Date: Tue, 28 Feb 2023 09:46:44 GMT
- Title: Reproducing kernel Hilbert spaces in the mean field limit
- Authors: Christian Fiedler, Michael Herty, Michael Rom, Chiara Segala,
Sebastian Trimpe
- Abstract summary: kernels are function spaces generated by kernels, so called reproducing kernel Hilbert spaces.
We show the rigorous mean field limit of kernels and provide a detailed analysis of the limiting reproducing Hilbert space.
- Score: 6.844996517347866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel methods, being supported by a well-developed theory and coming with
efficient algorithms, are among the most popular and successful machine
learning techniques. From a mathematical point of view, these methods rest on
the concept of kernels and function spaces generated by kernels, so called
reproducing kernel Hilbert spaces. Motivated by recent developments of learning
approaches in the context of interacting particle systems, we investigate
kernel methods acting on data with many measurement variables. We show the
rigorous mean field limit of kernels and provide a detailed analysis of the
limiting reproducing kernel Hilbert space. Furthermore, several examples of
kernels, that allow a rigorous mean field limit, are presented.
Related papers
- On the Approximation of Kernel functions [0.0]
The paper addresses approximations of the kernel itself.
For the Hilbert Gauss kernel on the unit cube, the paper establishes an upper bound of the associated eigenfunctions.
This improvement confirms low rank approximation methods such as the Nystr"om method.
arXiv Detail & Related papers (2024-03-11T13:50:07Z) - On kernel-based statistical learning in the mean field limit [7.2494787805712395]
In many applications of machine learning, a large number of variables are considered.
We consider the situation when the number of input variables goes to infinity.
In particular, we show mean field convergence of empirical and infinite-sample solutions.
arXiv Detail & Related papers (2023-10-27T11:42:56Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - On the Sublinear Regret of GP-UCB [58.25014663727544]
We show that the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm enjoys nearly optimal regret rates.
Our improvements rely on a key technical contribution -- regularizing kernel ridge estimators in proportion to the smoothness of the underlying kernel.
arXiv Detail & Related papers (2023-07-14T13:56:11Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Random Gegenbauer Features for Scalable Kernel Methods [11.370390549286757]
We propose efficient random features for approximating a new and rich class of kernel functions that we refer to as Generalized Zonal Kernels (GZK)
Our proposed GZK family generalizes the zonal kernels by introducing factors in their Gegenbauer series expansion.
We show that our proposed features outperform recent kernel approximation methods.
arXiv Detail & Related papers (2022-02-07T19:30:36Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
We present a recipe for constructing gauge equivariant kernels, which induce vector-valued Gaussian processes coherent with geometry.
We extend standard Gaussian process training methods, such as variational inference, to this setting.
arXiv Detail & Related papers (2021-10-27T13:31:10Z) - Kernel Mean Estimation by Marginalized Corrupted Distributions [96.9272743070371]
Estimating the kernel mean in a kernel Hilbert space is a critical component in many kernel learning algorithms.
We present a new kernel mean estimator, called the marginalized kernel mean estimator, which estimates kernel mean under the corrupted distribution.
arXiv Detail & Related papers (2021-07-10T15:11:28Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions,
Nystr\"om Method, and Use of Kernels in Machine Learning: Tutorial and Survey [5.967999555890417]
We start with reviewing the history of kernels in functional analysis and machine learning.
We introduce types of use of kernels in machine learning including kernel methods, kernel learning by semi-definite programming, Hilbert-Schmidt independence criterion, maximum mean discrepancy, kernel mean embedding, and kernel dimensionality reduction.
This paper can be useful for various fields of science including machine learning, dimensionality reduction, functional analysis in mathematics, and mathematical physics in quantum mechanics.
arXiv Detail & Related papers (2021-06-15T21:29:12Z) - Advanced Stationary and Non-Stationary Kernel Designs for Domain-Aware
Gaussian Processes [0.0]
We propose advanced kernel designs that only allow for functions with certain desirable characteristics to be elements of the reproducing kernel Hilbert space (RKHS)
We will show the impact of advanced kernel designs on Gaussian processes using several synthetic and two scientific data sets.
arXiv Detail & Related papers (2021-02-05T22:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.