A Dictionary of Closed-Form Kernel Mean Embeddings
- URL: http://arxiv.org/abs/2504.18830v1
- Date: Sat, 26 Apr 2025 07:33:30 GMT
- Title: A Dictionary of Closed-Form Kernel Mean Embeddings
- Authors: François-Xavier Briol, Alexandra Gessner, Toni Karvonen, Maren Mahsereci,
- Abstract summary: We provide a comprehensive dictionary of known kernel mean embeddings, along with practical tools for deriving new embeddings from known ones.<n>We also provide a Python library that includes minimal implementations of the embeddings.
- Score: 48.67713382782237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kernel mean embeddings -- integrals of a kernel with respect to a probability distribution -- are essential in Bayesian quadrature, but also widely used in other computational tools for numerical integration or for statistical inference based on the maximum mean discrepancy. These methods often require, or are enhanced by, the availability of a closed-form expression for the kernel mean embedding. However, deriving such expressions can be challenging, limiting the applicability of kernel-based techniques when practitioners do not have access to a closed-form embedding. This paper addresses this limitation by providing a comprehensive dictionary of known kernel mean embeddings, along with practical tools for deriving new embeddings from known ones. We also provide a Python library that includes minimal implementations of the embeddings.
Related papers
- Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data [2.8377382540923004]
The Gaussian process (GP) is a widely used machine learning method with implicit uncertainty characterization.<n>Traditional implementations of GPs involve stationary kernels that limit their flexibility.<n>We derive an alternative kernel that can discover and encode both sparsity and nonstationarity.
arXiv Detail & Related papers (2024-11-07T20:07:21Z) - On the Approximation of Kernel functions [0.0]
The paper addresses approximations of the kernel itself.
For the Hilbert Gauss kernel on the unit cube, the paper establishes an upper bound of the associated eigenfunctions.
This improvement confirms low rank approximation methods such as the Nystr"om method.
arXiv Detail & Related papers (2024-03-11T13:50:07Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Reconstructing Kernel-based Machine Learning Force Fields with
Super-linear Convergence [0.18416014644193063]
We consider the broad class of Nystr"om-type methods to construct preconditioners.
All considered methods aim to identify a representative subset of inducing ( Kernel) columns to approximate the dominant kernel spectrum.
arXiv Detail & Related papers (2022-12-24T13:45:50Z) - Interpolation with the polynomial kernels [5.8720142291102135]
kernels are widely used in machine learning and they are one of the default choices to develop kernel-based regression models.
They are rarely used and considered in numerical analysis due to their lack of strict positive definiteness.
This paper is devoted to establish some initial results for the study of these kernels, and their related algorithms.
arXiv Detail & Related papers (2022-12-15T08:30:23Z) - SOCKS: A Stochastic Optimal Control and Reachability Toolbox Using
Kernel Methods [0.0]
SOCKS is a data-driven optimal control toolbox based in kernel methods.
We present the main features of SOCKS and demonstrate its capabilities on several benchmarks.
arXiv Detail & Related papers (2022-03-12T00:09:08Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
We propose to meta-learn a kernel from offline data (Meta-KeL)
Under mild conditions, we guarantee that our estimated RKHS yields valid confidence sets.
We also empirically evaluate the effectiveness of our approach on a Bayesian optimization task.
arXiv Detail & Related papers (2022-02-01T17:46:51Z) - Nystr\"om Kernel Mean Embeddings [92.10208929236826]
We propose an efficient approximation procedure based on the Nystr"om method.
It yields sufficient conditions on the subsample size to obtain the standard $n-1/2$ rate.
We discuss applications of this result for the approximation of the maximum mean discrepancy and quadrature rules.
arXiv Detail & Related papers (2022-01-31T08:26:06Z) - Kernel Mean Estimation by Marginalized Corrupted Distributions [96.9272743070371]
Estimating the kernel mean in a kernel Hilbert space is a critical component in many kernel learning algorithms.
We present a new kernel mean estimator, called the marginalized kernel mean estimator, which estimates kernel mean under the corrupted distribution.
arXiv Detail & Related papers (2021-07-10T15:11:28Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.