論文の概要: H-AES: Towards Automated Essay Scoring for Hindi
- arxiv url: http://arxiv.org/abs/2302.14635v1
- Date: Tue, 28 Feb 2023 15:14:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 15:56:27.067064
- Title: H-AES: Towards Automated Essay Scoring for Hindi
- Title(参考訳): H-AES:ヒンディー語の自動評価に向けて
- Authors: Shubhankar Singh, Anirudh Pupneja, Shivaansh Mital, Cheril Shah,
Manish Bawkar, Lakshman Prasad Gupta, Ajit Kumar, Yaman Kumar, Rushali Gupta,
Rajiv Ratn Shah
- Abstract要約: ヒンディー語領域におけるAES(Automated Essay Scoring)の最先端手法を再現・比較する。
LSTM Networks や Fine-Tuned Transformer Architecture など,古典的な機能ベースの機械学習(ML)と高度なエンドツーエンドモデルを採用しています。
我々は、英訳エッセイを用いて、我々のモデルを訓練し、評価し、自分たちの小規模で実世界のヒンディー語コーパスでそのパフォーマンスを実証的に測定する。
- 参考スコア(独自算出の注目度): 33.755800922763946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of Natural Language Processing (NLP) for Automated Essay Scoring
(AES) has been well explored in the English language, with benchmark models
exhibiting performance comparable to human scorers. However, AES in Hindi and
other low-resource languages remains unexplored. In this study, we reproduce
and compare state-of-the-art methods for AES in the Hindi domain. We employ
classical feature-based Machine Learning (ML) and advanced end-to-end models,
including LSTM Networks and Fine-Tuned Transformer Architecture, in our
approach and derive results comparable to those in the English language domain.
Hindi being a low-resource language, lacks a dedicated essay-scoring corpus. We
train and evaluate our models using translated English essays and empirically
measure their performance on our own small-scale, real-world Hindi corpus. We
follow this up with an in-depth analysis discussing prompt-specific behavior of
different language models implemented.
- Abstract(参考訳): AES(Automated Essay Scoring)における自然言語処理(NLP)の利用は、人間のスコアに匹敵する性能を示すベンチマークモデルを用いて、英語でよく研究されている。
しかし、ヒンディー語や他の低リソース言語におけるAESは未だ探索されていない。
本研究では,ヒンディー語領域におけるAESの最先端手法を再現・比較する。
LSTM Networks や Fine-Tuned Transformer Architecture など,古典的な機能ベースの機械学習(ML) と高度なエンドツーエンドモデルを用いて,我々のアプローチと,英語領域に匹敵する結果を導出する。
低リソースの言語であるHindiには、エッセイの専門コーパスがない。
我々は、英訳エッセイを用いて、我々のモデルを訓練し、評価し、自分たちの小規模で実世界のヒンディー語コーパスでそのパフォーマンスを実証的に測定する。
我々は、実装された異なる言語モデルのプロンプト特有の振る舞いについて詳細に分析する。
関連論文リスト
- Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
本稿では,多言語文脈における知識編集技術を検討することにより,言語的平等の必要性を戦略的に識別する。
Mistral, TowerInstruct, OpenHathi, Tamil-Llama, Kan-Llamaなどのモデルの性能を,英語,ドイツ語,フランス語,イタリア語,スペイン語,ヒンディー語,タミル語,カンナダ語を含む言語で評価した。
論文 参考訳(メタデータ) (2024-06-17T01:54:27Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Automatic Readability Assessment for Closely Related Languages [6.233117407988574]
この研究は、相互の知性や言語関連度などの言語的側面が、低リソース環境でのARAをどのように改善できるかに焦点を当てる。
フィリピン・タガログ語・ビコル語・セブアーノ語の3言語で書かれた短い記事を収集し,読みやすさ評価モデルを構築した。
本研究は, 相互信頼度の高い言語にn-gram重み付けを適用した新たな機能であるCrossNGOの導入により, ARAモデルの性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-05-22T20:42:53Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
低レベルの言語と高レベルの言語のパフォーマンスギャップを狭めるためのデータセットとモデルを作成します。
何千ものタスクをトレーニングしながらオーバーフィッティングに対処するために,複数のアーキテクチャとトレーニングの改善を提案する。
本モデルでは,従来の最先端技術と比較して,BLEUの44%の改善を実現している。
論文 参考訳(メタデータ) (2022-07-11T07:33:36Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
スコアリングモデルの驚くべき逆方向の脆さの原因について検討する。
のモデルとして訓練されているにもかかわらず、単語の袋のように振る舞うことを示唆している。
高い精度で試料を発生させる過敏性と過敏性を検出できる検出ベース保護モデルを提案する。
論文 参考訳(メタデータ) (2021-09-24T03:49:38Z) - Cross-lingual Emotion Detection [6.767035411834297]
我々は英語をアラビア語とスペイン語をターゲット言語とする原語とみなしている。
対象言語データに基づいてトレーニングされたBERTベースのモノリンガルモデルは,それぞれアラビア語とスペイン語の絶対ジャカードスコアを4%上回り,SOTA(State-of-the-art)を5%上回りました。
次に、英語データのみを用いた言語間アプローチを用いることで、アラビア語とスペイン語のBERTモデルの90%以上と80%以上の相対的有効性を達成できることを示す。
論文 参考訳(メタデータ) (2021-06-10T19:52:06Z) - Indic-Transformers: An Analysis of Transformer Language Models for
Indian Languages [0.8155575318208631]
Transformerアーキテクチャに基づく言語モデルは、幅広いNLPタスクにおいて最先端のパフォーマンスを達成した。
しかしながら、このパフォーマンスは通常、英語、フランス語、スペイン語、ドイツ語などの高リソース言語でテストされ、報告される。
一方、インドの言語はそのようなベンチマークでは表現されていない。
論文 参考訳(メタデータ) (2020-11-04T14:43:43Z) - Building Low-Resource NER Models Using Non-Speaker Annotation [58.78968578460793]
言語横断的な手法はこれらの懸念に対処する上で顕著な成功を収めた。
本稿では,Non-Speaker''(NS)アノテーションを用いた低リソース名前付きエンティティ認識(NER)モデル構築のための補完的アプローチを提案する。
NSアノテータの使用は、現代の文脈表現上に構築された言語間メソッドよりも、一貫した結果が得られることを示す。
論文 参考訳(メタデータ) (2020-06-17T03:24:38Z) - Deep Learning for Hindi Text Classification: A Comparison [6.8629257716723]
デヴァナガリ文字で書かれた形態的に豊かで低資源のヒンディー語を分類する研究は、大きなラベル付きコーパスがないために限られている。
本研究では,CNN,LSTM,注意に基づくモデル評価のために,英文データセットの翻訳版を用いた。
また,本論文は,一般的なテキスト分類手法のチュートリアルとしても機能する。
論文 参考訳(メタデータ) (2020-01-19T09:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。