A guided light system for agile individual addressing of Ba$^+$ qubits
with $10^{-4}$ level intensity crosstalk
- URL: http://arxiv.org/abs/2302.14711v1
- Date: Tue, 28 Feb 2023 16:20:18 GMT
- Title: A guided light system for agile individual addressing of Ba$^+$ qubits
with $10^{-4}$ level intensity crosstalk
- Authors: Ali Binai-Motlagh, Matthew Day, Nikolay Videnov, Noah Greenberg,
Crystal Senko, and Rajibul Islam
- Abstract summary: We present a novel, guided-light individual addressing system for hyperfine Ba$+$ qubits.
The system takes advantage of laser-written waveguide technology, enabled by the atomic structure of Ba$+$.
We demonstrate a nearest neighbour relative intensity crosstalk on the order of 10$-4$, without any active aberration compensation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trapped ions are one of the leading platforms for quantum information
processing, exhibiting the highest gate and measurement fidelities of all
contending hardware. In order to realize a universal quantum computer with
trapped ions, independent and parallel control over the state of each qubit is
necessary. The manipulation of individual qubit states in an ion chain via
stimulated Raman transitions generally requires light focused on individual
ions. In this manuscript, we present a novel, guided-light individual
addressing system for hyperfine Ba$^+$ qubits. The system takes advantage of
laser-written waveguide technology, enabled by the atomic structure of Ba$^+$,
allowing the use of visible light to drive Raman transitions. Such waveguides
define the spatial mode of light, suppressing aberrations that would have
otherwise accumulated in a free-space optics set up. As a result, we
demonstrate a nearest neighbour relative intensity crosstalk on the order of
10$^{-4}$, without any active aberration compensation. This is comparable to or
better than other previous demonstrations of individual addressing. At the same
time, our modular approach provides independent and agile control over the
amplitude, frequency, and phase of each channel; combining the strengths of
previous implementations.
Related papers
- Temporally multiplexed ion-photon quantum interface via fast ion-chain transport [2.3610495849936353]
A key technique to increase the modest entangling rates of existing long-distance quantum networking approaches is multiplexing.
Here, we demonstrate a temporally multiplexed ion-photon interface via rapid transport of a chain of nine calcium ions across 74 $mathrmmu m$ within 86 $mathrmmu s$.
Our proof-of-principle implementation paves the way for large-scale quantum networking with trapped ions, but highlights some challenges that must be overcome.
arXiv Detail & Related papers (2024-05-17T02:50:37Z) - Multi-site Integrated Optical Addressing of Trapped Ions [0.0]
One of the most effective ways to advance the performance of quantum computers is to increase the number of qubits or quantum resources in the system.
A major technical challenge that must be solved is scaling the delivery of optical signals to many individual ions.
This work represents an important step towards the realization of scalable integrated photonics for atomic clocks and trapped-ion quantum information systems.
arXiv Detail & Related papers (2023-08-28T22:28:07Z) - A low-crosstalk double-side addressing system using acousto-optic
deflectors for atomic ion qubits [43.30164109590217]
We demonstrate a low-crosstalk double-side addressing system based on a pair of acousto-optic deflectors (AODs)
The AODs addressing method can flexibly and parallelly address arbitrary ions between which the distance is variable in a chain.
We employ two 0.4NA objective lenses in both arms of the Raman laser and obtain a beam waist of 0.95$mumathrmm$, resulting in a Rabi rate crosstalk as low as $6.32times10-4$ when the neighboring ion separation is about 5.5$mu
arXiv Detail & Related papers (2023-06-02T07:12:59Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Coupling the motional quantum states of spatially distant ions using a
conducting wire [0.0]
Interfacing ion qubits in separate traps is among the challenges towards scaling up ion quantum computing.
This theoretical study focuses on using a conducting wire to couple the motional quantum states of ions in separate planar traps.
We find no barriers to exchanging quantum information between ion qubits in separate surface traps using a conducting wire.
arXiv Detail & Related papers (2021-11-29T21:06:12Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Scalable and Parallel Tweezer Gates for Quantum Computing with Long Ion
Strings [1.554996360671779]
We devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes.
We show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.
arXiv Detail & Related papers (2020-08-26T06:01:46Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Minimum optical depth multi-port interferometers for approximating any
unitary transformation and any pure state [52.77024349608834]
We show that any pure state, in any dimension $d$, can be prepared with infidelity $le 10-15$ using multi-port interferometers.
The schemes in [Phys. Rev. Lett. textbf73, 58 (1994) and Optica text3, 1460, 1460, only achieves an infidelity in the order of $10-7$ for block-diagonal unitary transformations.
arXiv Detail & Related papers (2020-02-04T15:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.