論文の概要: Multi-view Semantic Consistency based Information Bottleneck for
Clustering
- arxiv url: http://arxiv.org/abs/2303.00002v1
- Date: Tue, 28 Feb 2023 02:01:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 17:15:35.504367
- Title: Multi-view Semantic Consistency based Information Bottleneck for
Clustering
- Title(参考訳): クラスタリングのためのマルチビューセマンティクス一貫性に基づく情報ボトルネック
- Authors: Wenbiao Yan, Jihua Zhu, Yiyang Zhou, Yifei Wang, Qinghai Zheng
- Abstract要約: クラスタリングのための多視点セマンティック一貫性に基づく情報ボトルネック(MSCIB)について紹介する。
MSCIBは、異なる視点における情報ボトルネックの学習プロセスを改善するために、セマンティック一貫性を追求する。
セマンティック空間における複数のビューのアライメント操作を行い、多視点データの貴重な一貫した情報を共同で達成する。
- 参考スコア(独自算出の注目度): 13.589996737740208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view clustering can make use of multi-source information for
unsupervised clustering. Most existing methods focus on learning a fused
representation matrix, while ignoring the influence of private information and
noise. To address this limitation, we introduce a novel Multi-view Semantic
Consistency based Information Bottleneck for clustering (MSCIB). Specifically,
MSCIB pursues semantic consistency to improve the learning process of
information bottleneck for different views. It conducts the alignment operation
of multiple views in the semantic space and jointly achieves the valuable
consistent information of multi-view data. In this way, the learned semantic
consistency from multi-view data can improve the information bottleneck to more
exactly distinguish the consistent information and learn a unified feature
representation with more discriminative consistent information for clustering.
Experiments on various types of multi-view datasets show that MSCIB achieves
state-of-the-art performance.
- Abstract(参考訳): マルチビュークラスタリングは、教師なしクラスタリングにマルチソース情報を利用することができる。
既存のほとんどの手法は、個人情報やノイズの影響を無視しながら、融合表現行列の学習に重点を置いている。
そこで本研究では,マルチビュー・セマンティクス・一貫性に基づくクラスタリングのための情報ボトルネック(mscib)を提案する。
特に、MSCIBは、異なる視点における情報ボトルネックの学習プロセスを改善するために、セマンティック一貫性を追求している。
意味空間における複数のビューのアライメント操作を行い、協調してマルチビューデータの貴重な一貫性情報を得る。
このように、マルチビューデータからの学習されたセマンティック一貫性は、情報のボトルネックを改善し、一貫性のある情報をより正確に識別し、クラスタリングのためのより差別的な一貫性のある情報を持つ統一された特徴表現を学習することができる。
様々なタイプのマルチビューデータセットの実験により、MSCIBが最先端のパフォーマンスを達成することが示された。
関連論文リスト
- A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
本研究では,多視点クラスタリングフレームワークを情報理論の観点から検討する,SUMVC(Sufficient Multi-View Clustering)と呼ばれる新しい手法を提案する。
まず,変分解析を用いて一貫した情報を生成する,シンプルで信頼性の高いマルチビュークラスタリング手法SCMVCを開発する。
次に、一貫した情報を強化し、ビュー間の不要な情報を最小限に抑えるのに十分な表現境界を提案する。
論文 参考訳(メタデータ) (2023-09-25T09:41:11Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
本稿では,多視点学習と$k$-meansを統合フレームワークに組み込んだ一段階のマルチビュークラスタリングを提案する。
そこで本研究では,効率の良い最適化アルゴリズムを開発し,その解法について述べる。
論文 参考訳(メタデータ) (2023-06-08T02:52:24Z) - Dual Representation Learning for One-Step Clustering of Multi-View Data [30.131568561100817]
異なるビューの共通情報と特定情報の二重表現を利用して,新しい一段階のマルチビュークラスタリング手法を提案する。
このフレームワークでは、表現学習とクラスタリングのパーティションが相互に恩恵を受け、クラスタリングのパフォーマンスが効果的に向上する。
論文 参考訳(メタデータ) (2022-08-30T14:20:26Z) - Self-Supervised Information Bottleneck for Deep Multi-View Subspace
Clustering [29.27475285925792]
我々は、SIB-MSC(Self-supervised Information Bottleneck based Multi-view Subspace Clustering)と呼ばれる新しいフレームワークを確立する。
SIB-MSCは、情報のボトルネックから利点を継承し、各ビューの潜伏空間を学習し、異なるビューの潜伏表現の共通情報をキャプチャする。
本手法は,最先端手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-26T15:49:59Z) - Error-Robust Multi-View Clustering: Progress, Challenges and
Opportunities [67.54503077766171]
ラベル情報は取得に費用がかかることが多いため、マルチビュークラスタリングが注目されている。
明示的なエラー除去定式化によるエラーロバストマルチビュークラスタリングアプローチは、5つの広範な研究カテゴリに構成できる。
この調査は、マルチビューデータに対するエラーロストクラスタリングの最近の進歩を要約し、レビューする。
論文 参考訳(メタデータ) (2021-05-07T04:03:02Z) - Self-supervised Discriminative Feature Learning for Multi-view
Clustering [12.725701189049403]
マルチビュークラスタリング(SDMVC)のための自己監視型識別機能学習の提案
具体的には、各ビューの組み込み機能を独立して学習するために、ディープオートエンコーダが適用される。
さまざまなタイプのマルチビューデータセットの実験は、SDMVCが最先端のパフォーマンスを達成することを示しています。
論文 参考訳(メタデータ) (2021-03-28T07:18:39Z) - V3H: View Variation and View Heredity for Incomplete Multi-view
Clustering [65.29597317608844]
不完全なマルチビュークラスタリングは、これらの不完全なビューを統合する効果的な方法である。
本稿では,この制限を克服するために,新しいビューバージョニング・ビュー・ジェレダリティ・アプローチ(V3H)を提案する。
V3Hは、不完全なマルチビューデータから一貫した情報とユニークな情報を同時に学習するためのクラスタリングアルゴリズムに遺伝学を導入する最初の研究である可能性がある。
論文 参考訳(メタデータ) (2020-11-23T03:24:48Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。