Parameter Optimization of LLC-Converter with multiple operation points
using Reinforcement Learning
- URL: http://arxiv.org/abs/2303.00004v1
- Date: Tue, 28 Feb 2023 14:23:09 GMT
- Title: Parameter Optimization of LLC-Converter with multiple operation points
using Reinforcement Learning
- Authors: Georg Kruse, Dominik Happel, Stefan Ditze, Stefan Ehrlich, Andreas
Rosskopf
- Abstract summary: A reinforcement learning approach is adapted to optimize a LLC converter at multiple operation points.
The trained RL agent is able to solve new optimization problems based on LLC converter simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The optimization of electrical circuits is a difficult and time-consuming
process performed by experts, but also increasingly by sophisticated
algorithms. In this paper, a reinforcement learning (RL) approach is adapted to
optimize a LLC converter at multiple operation points corresponding to
different output powers at high converter efficiency at different switching
frequencies. During a training period, the RL agent learns a problem specific
optimization policy enabling optimizations for any objective and boundary
condition within a pre-defined range. The results show, that the trained RL
agent is able to solve new optimization problems based on LLC converter
simulations using Fundamental Harmonic Approximation (FHA) within 50 tuning
steps for two operation points with power efficiencies greater than 90%.
Therefore, this AI technique provides the potential to augment expert-driven
design processes with data-driven strategy extraction in the field of power
electronics and beyond.
Related papers
- Automated Design and Optimization of Distributed Filtering Circuits via Reinforcement Learning [20.500468654567033]
This study proposes a novel end-to-end automated method for DFC design.
The proposed method harnesses reinforcement learning (RL) algorithms, eliminating the dependence on the design experience of engineers.
Our method achieves superior performance when designing complex or rapidly evolving DFCs.
arXiv Detail & Related papers (2024-02-22T02:36:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Energy Efficiency Maximization in IRS-Aided Cell-Free Massive MIMO
System [2.9081408997650375]
In this paper, we consider an intelligent reflecting surface (IRS)-aided cell-free massive multiple-input multiple-output system, where the beamforming at access points and the phase shifts at IRSs are jointly optimized to maximize energy efficiency (EE)
To solve EE problem, we propose an iterative optimization algorithm by using quadratic transform and Lagrangian dual transform to find the optimum beamforming and phase shifts.
We further propose a deep learning based approach for joint beamforming and phase shifts design. Specifically, a two-stage deep neural network is trained offline using the unsupervised learning manner, which is then deployed online for
arXiv Detail & Related papers (2022-12-24T14:58:15Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
In reinforcement learning (RL), the information content of data gathered by the learning agent is dependent on the setting of many hyper- parameters.
In this work, a novel approach for autonomous hyper- parameter setting using Bayesian optimization is proposed.
Experiments reveal promising results compared to other manual tweaking and optimization-based approaches.
arXiv Detail & Related papers (2021-12-15T13:10:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.