論文の概要: Single-Cell Multimodal Prediction via Transformers
- arxiv url: http://arxiv.org/abs/2303.00233v1
- Date: Wed, 1 Mar 2023 05:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 16:01:33.264011
- Title: Single-Cell Multimodal Prediction via Transformers
- Title(参考訳): トランスフォーマーによる単一セルマルチモーダル予測
- Authors: Wenzhuo Tang, Hongzhi Wen, Renming Liu, Jiayuan Ding, Wei Jin, Yuying
Xie, Hui Liu, Jiliang Tang
- Abstract要約: 本稿では、外部ドメイン知識を取り入れ、各モダリティとクロスモーダルの相互作用をモデル化する枠組みを提案する。
scMoFormerは、さまざまなベンチマークデータセットで優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 30.224044780744517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent development of multimodal single-cell technology has made the
possibility of acquiring multiple omics data from individual cells, thereby
enabling a deeper understanding of cellular states and dynamics. Nevertheless,
the proliferation of multimodal single-cell data also introduces tremendous
challenges in modeling the complex interactions among different modalities. The
recently advanced methods focus on constructing static interaction graphs and
applying graph neural networks (GNNs) to learn from multimodal data. However,
such static graphs can be suboptimal as they do not take advantage of the
downstream task information; meanwhile GNNs also have some inherent limitations
when deeply stacking GNN layers. To tackle these issues, in this work, we
investigate how to leverage transformers for multimodal single-cell data in an
end-to-end manner while exploiting downstream task information. In particular,
we propose a scMoFormer framework which can readily incorporate external domain
knowledge and model the interactions within each modality and cross modalities.
Extensive experiments demonstrate that scMoFormer achieves superior performance
on various benchmark datasets. Note that scMoFormer won a Kaggle silver medal
with the rank of $24\ /\ 1221$ (Top 2%) without ensemble in a NeurIPS 2022
competition. Our implementation is publicly available at Github.
- Abstract(参考訳): 近年のマルチモーダル単一細胞技術の発展により、個々の細胞から複数のオミクスデータを取得することが可能となり、細胞状態やダイナミクスのより深い理解が可能となった。
それでも、マルチモーダルな単細胞データの増殖は、異なるモダリティ間の複雑な相互作用をモデル化する上で大きな課題をもたらす。
近年の手法では,静的相互作用グラフの構築とグラフニューラルネットワーク(gnns)を適用し,マルチモーダルデータから学習する。
しかし、このような静的グラフは、ダウンストリームのタスク情報を利用することができないため、最適ではない可能性がある。
そこで本研究では,ダウンストリームタスク情報を活用しながら,マルチモーダル・シングルセル・データに対するトランスフォーマーの活用方法について検討する。
特に、外部のドメイン知識を容易に組み込むことができ、各モダリティとクロスモーダルの相互作用をモデル化できる scMoFormer フレームワークを提案する。
scMoFormerはさまざまなベンチマークデータセットで優れたパフォーマンスを実現している。
scmoformerは2022年のneuripsコンペティションでアンサンブル無しに24\ /\ 1221$ (トップ2%)のカグル銀メダルを獲得した。
私たちの実装はgithubで公開されています。
関連論文リスト
- U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semanticsを紹介する。
我々は,グローバルな特徴とローカルな特徴の効果的な抽出と統合を保証するために,複数のスケールで機能融合を採用している。
実験により,本手法は複数のデータセットにまたがって優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-24T08:58:48Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
本研究では,MMKGCを実現するための包括的フレームワークNativEを提案する。
NativEは、任意のモダリティに対して適応的な融合を可能にするリレーショナル誘導デュアルアダプティブフュージョンモジュールを提案する。
提案手法を評価するために,5つのデータセットを用いたWildKGCという新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-03-28T03:04:00Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
汎用の双方向アダプタを用いたマルチモーダル視覚プロンプト追跡モデルを提案する。
我々は、モーダリティ固有の情報をあるモーダリティから別のモーダリティへ転送するための、シンプルだが効果的なライト・フィーチャー・アダプタを開発した。
本モデルでは,完全微調整法と素早い学習法の両方と比較して,追跡性能が優れている。
論文 参考訳(メタデータ) (2023-12-17T05:27:31Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNとTransformerには独自の利点があり、MTL(Multi-task Learning)の高密度予測に広く使われている。
本稿では,変形可能なCNNと問合せベースのTransformerの長所を共用したMTLモデルを提案する。
論文 参考訳(メタデータ) (2023-08-10T17:37:49Z) - Graph Neural Networks for Multimodal Single-Cell Data Integration [32.8390339109358]
本稿では,3つのタスクに対処するため,一般的なグラフニューラルネットワークフレームワークであるtextitscMoGNN$を提案する。
textitscMoGNN$は、最先端および従来のアプローチと比較して、3つのタスクで優れた結果を示す。
論文 参考訳(メタデータ) (2022-03-03T17:59:02Z) - Progressive Multi-stage Interactive Training in Mobile Network for
Fine-grained Recognition [8.727216421226814]
再帰型モザイク発電機(RMG-PMSI)を用いたプログレッシブ多段階インタラクティブトレーニング手法を提案する。
まず、異なる位相の異なる画像を生成する再帰モザイク発生器(RMG)を提案する。
次に、異なるステージの特徴は、異なるステージの対応する特徴を強化し補完するマルチステージインタラクション(MSI)モジュールを通過する。
RMG-PMSIは高い堅牢性と伝達性で性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-12-08T10:50:03Z) - Graph Capsule Aggregation for Unaligned Multimodal Sequences [16.679793708015534]
本稿では,グラフベースのニューラルモデルとカプセルネットワークを用いた非整合マルチモーダルシーケンスをモデル化するために,Graph Capsule Aggregation(GraphCAGE)を導入する。
シーケンスデータをグラフに変換することにより、前述のRNNの問題を回避することができる。
さらに、Capsule Networkの集約機能とグラフベースの構造により、我々のモデルは解釈可能になり、長距離依存の問題をよりよく解決できる。
論文 参考訳(メタデータ) (2021-08-17T10:04:23Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - Analyzing Unaligned Multimodal Sequence via Graph Convolution and Graph
Pooling Fusion [28.077474663199062]
本稿では,マルチモーダルシーケンシャルデータモデリングにおけるグラフニューラルネットワーク(GNN)の有効性を検討するために,マルチモーダルグラフと呼ばれる新しいモデルを提案する。
グラフベースのモデルは、2つのベンチマークデータセット上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2020-11-27T06:12:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。