Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
- URL: http://arxiv.org/abs/2303.00301v3
- Date: Mon, 03 Mar 2025 20:41:45 GMT
- Title: Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
- Authors: Adrien Corenflos, Simo Särkkä,
- Abstract summary: Particle Gibbs is considered the gold standard for this task, but it quickly degrades in performance as the latent space dimensionality increases.<n>We introduce novel auxiliary sampling approaches that address these limitations.<n>We develop both efficient exact Kalman-based samplers and enhanced Particle Gibbs algorithms that maintain performance in high-dimensional latent spaces.
- Score: 12.13101948886485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling from the full posterior distribution of high-dimensional non-linear, non-Gaussian latent dynamical models presents significant computational challenges. While Particle Gibbs (also known as conditional sequential Monte Carlo) is considered the gold standard for this task, it quickly degrades in performance as the latent space dimensionality increases. Conversely, globally Gaussian-approximated methods like extended Kalman filtering, though more robust, are seldom used for posterior sampling due to their inherent bias. We introduce novel auxiliary sampling approaches that address these limitations. By incorporating artificial observations of the system as auxiliary variables in our MCMC kernels, we develop both efficient exact Kalman-based samplers and enhanced Particle Gibbs algorithms that maintain performance in high-dimensional latent spaces. Some of our methods support parallelisation along the time dimension, achieving logarithmic scaling when implemented on GPUs. Empirical evaluations demonstrate superior statistical and computational performance compared to existing approaches for high-dimensional latent dynamical systems.
Related papers
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.
Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.
Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Flow-based Bayesian filtering for high-dimensional nonlinear stochastic dynamical systems [4.382988524355736]
We propose a flow-based Bayesian filter (FBF) that integrates normalizing flows to construct a novel latent linear state-space model with Gaussian filtering distributions.
This framework facilitates efficient density estimation and sampling using invertible transformations provided by normalizing flows.
Numerical experiments demonstrate the superior accuracy and efficiency of FBF.
arXiv Detail & Related papers (2025-02-22T14:04:23Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity [11.71206628091551]
Diffusion models are costly to train and evaluate, reducing the inference cost for diffusion models remains a major goal.
Inspired by the recent empirical success in accelerating diffusion models via the parallel sampling techniqueciteshih2024parallel, we propose to divide the sampling process into $mathcalO(1)$ blocks with parallelizable Picard iterations within each block.
Our results shed light on the potential of fast and efficient sampling of high-dimensional data on fast-evolving modern large-memory GPU clusters.
arXiv Detail & Related papers (2024-05-24T23:59:41Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Improving sample efficiency of high dimensional Bayesian optimization
with MCMC [7.241485121318798]
We propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior.
We show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.
arXiv Detail & Related papers (2024-01-05T05:56:42Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Weighted Riesz Particles [0.0]
We consider the target distribution as a mapping where the infinite-dimensional space of the parameters consists of a number of deterministic submanifolds.
We study the properties of the point, called Riesz, and embed it into sequential MCMC.
We find that there will be higher acceptance rates with fewer evaluations.
arXiv Detail & Related papers (2023-12-01T14:36:46Z) - Two dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method [0.0]
We present a hybrid numerical approach to simulate quantum many body problems on two spatial dimensional quantum lattice models.
We demonstrate for the two dimensional spinless fermion model and for the Hubbard model on torus geometry that several orders of magnitude in computational time can be saved.
arXiv Detail & Related papers (2023-11-23T17:07:47Z) - Efficient Exploration in Continuous-time Model-based Reinforcement
Learning [37.14026153342745]
Reinforcement learning algorithms typically consider discrete-time dynamics, even though the underlying systems are often continuous in time.
We introduce a model-based reinforcement learning algorithm that represents continuous-time dynamics.
arXiv Detail & Related papers (2023-10-30T15:04:40Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
We propose to integrate the efficient transformed Gaussian process (ETGP) into the GPSSM to efficiently model the transition function in high-dimensional latent state space.
We also develop a corresponding variational inference algorithm that surpasses existing methods in terms of parameter count and computational complexity.
arXiv Detail & Related papers (2023-09-03T04:34:33Z) - Online Time Series Anomaly Detection with State Space Gaussian Processes [12.483273106706623]
R-ssGPFA is an unsupervised online anomaly detection model for uni- and multivariate time series.
For high-dimensional time series, we propose an extension of Gaussian process factor analysis to identify the common latent processes of the time series.
Our model's robustness is improved by using a simple to skip Kalman updates when encountering anomalous observations.
arXiv Detail & Related papers (2022-01-18T06:43:32Z) - Fast Doubly-Adaptive MCMC to Estimate the Gibbs Partition Function with
Weak Mixing Time Bounds [7.428782604099876]
A major obstacle to practical applications of Gibbs distributions is the need to estimate their partition functions.
We present a novel method for reducing the computational complexity of rigorously estimating the partition functions.
arXiv Detail & Related papers (2021-11-14T15:42:02Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
We present a recently developed method of adaptive machine learning for time-varying systems.
Our approach is to map very high (N>100k) dimensional inputs into the low dimensional (N2) latent space at the output of the encoder section of an encoder-decoder CNN.
This method allows us to learn correlations within and to track their evolution in real time based on feedback without interrupts.
arXiv Detail & Related papers (2021-07-13T16:05:28Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
This paper presents a general construction of deterministic measure-preserving dynamics using autonomous ODEs and tools from differential geometry.
We show how Hybrid Monte Carlo and other deterministic samplers follow as special cases of our theory.
arXiv Detail & Related papers (2021-06-18T15:36:09Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
We present an adaptive Hessian approximated gradient MCMC method to incorporate local geometric information while sampling from the posterior.
We adopt a magnitude-based weight pruning method to enforce the sparsity of the network.
arXiv Detail & Related papers (2020-10-03T16:22:15Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
We propose a non-uniform subsampling scheme to improve the sampling accuracy.
EWSG is designed so that a non-uniform gradient-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method.
In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index.
arXiv Detail & Related papers (2020-02-20T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.