論文の概要: Mitigating Backdoors in Federated Learning with FLD
- arxiv url: http://arxiv.org/abs/2303.00302v2
- Date: Mon, 18 Dec 2023 15:18:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 02:51:20.135596
- Title: Mitigating Backdoors in Federated Learning with FLD
- Title(参考訳): FLDによるフェデレーション学習におけるバックドアの緩和
- Authors: Yihang Lin, Pengyuan Zhou, Zhiqian Wu, Yong Liao
- Abstract要約: フェデレーション学習は、クライアントがプライバシー保護のために生データをアップロードすることなく、グローバルモデルを協調的にトレーニングすることを可能にする。
この機能は最近、バックドア攻撃に直面したフェデレーション学習の脆弱性の原因となっていることが判明した。
バックドア攻撃に対して効果的に防御する新しいモデルフィルタリング手法であるフェデレート層検出(FLD)を提案する。
- 参考スコア(独自算出の注目度): 7.908496863030483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning allows clients to collaboratively train a global model
without uploading raw data for privacy preservation. This feature, i.e., the
inability to review participants' datasets, has recently been found responsible
for federated learning's vulnerability in the face of backdoor attacks.
Existing defense methods fall short from two perspectives: 1) they consider
only very specific and limited attacker models and unable to cope with advanced
backdoor attacks, such as distributed backdoor attacks, which break down the
global trigger into multiple distributed triggers. 2) they conduct detection
based on model granularity thus the performance gets impacted by the model
dimension. To address these challenges, we propose Federated Layer Detection
(FLD), a novel model filtering approach for effectively defending against
backdoor attacks. FLD examines the models based on layer granularity to capture
the complete model details and effectively detect potential backdoor models
regardless of model dimension. We provide theoretical analysis and proof for
the convergence of FLD. Extensive experiments demonstrate that FLD effectively
mitigates state-of-the-art backdoor attacks with negligible impact on the
accuracy of the primary task.
- Abstract(参考訳): フェデレーション学習は、クライアントがプライバシー保護のために生データをアップロードすることなく、グローバルモデルを協調的にトレーニングすることを可能にする。
この機能、すなわち、参加者のデータセットをレビューできないことは、最近、バックドア攻撃に直面したフェデレーション学習の脆弱性の原因であることが判明した。
既存の防御方法は2つの視点から外れている。
1) 非常に特異で限定的な攻撃モデルのみを考慮し、分散バックドア攻撃のような先進的なバックドア攻撃に対処できず、グローバルトリガーを複数の分散トリガに分解する。
2) モデル粒度に基づく検出を行い, モデル寸法の影響を受けやすいようにした。
これらの課題に対処するために,我々は,バックドア攻撃を効果的に防御する新しいモデルフィルタリング手法であるフェデレート層検出(fld)を提案する。
FLDは、層粒度に基づくモデルを調べ、完全なモデルの詳細を捉え、モデル寸法に関係なく潜在的バックドアモデルを自動的に検出する。
我々はFLDの収束の理論的解析と証明を提供する。
広範囲な実験により、fldは最先端のバックドア攻撃を効果的に軽減し、プライマリタスクの精度に悪影響を及ぼすことが示されている。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning(FL)は、参加者がプライベートデータを共有せずに、協力的にモデルをトレーニングできる分散型機械学習手法である。
プライバシーとスケーラビリティの利点にもかかわらず、FLはバックドア攻撃の影響を受けやすい。
本稿では,バックドアトリガの最適化によりバックドア目標を動的に構築する,FLのバックドア攻撃戦略であるDPOTを提案する。
論文 参考訳(メタデータ) (2024-05-10T02:44:25Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Backdoor Defense in Federated Learning Using Differential Testing and
Outlier Detection [24.562359531692504]
バックドア攻撃からFLシステムを保護するための自動防御フレームワークであるDifFenseを提案する。
提案手法は,グローバルモデルの平均バックドア精度を4%以下に低減し,偽陰性率ゼロを達成する。
論文 参考訳(メタデータ) (2022-02-21T17:13:03Z) - Identifying Backdoor Attacks in Federated Learning via Anomaly Detection [31.197488921578984]
フェデレーション学習はバックドア攻撃に弱い。
本稿では,共有モデル更新を検証し,攻撃に対する効果的な防御方法を提案する。
提案手法が最先端のバックドア攻撃を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2022-02-09T07:07:42Z) - DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection [26.593268413299228]
フェデレートラーニング(FL)では、複数のクライアントが、データを公開せずに、プライベートデータ上でニューラルネットワーク(NN)モデルを協調的にトレーニングすることができる。
DeepSightは、バックドア攻撃を緩和するための新しいモデルフィルタリングアプローチである。
モデルの性能に悪影響を及ぼすことなく、最先端のバックドア攻撃を軽減できることを示す。
論文 参考訳(メタデータ) (2022-01-03T17:10:07Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
本稿では,第1の汎用フレームワークであるCertifiably Robust Federated Learning (CRFL) を用いて,バックドアに対する堅牢なFLモデルをトレーニングする。
提案手法は, モデルパラメータのクリッピングと平滑化を利用して大域的モデル平滑化を制御する。
論文 参考訳(メタデータ) (2021-06-15T16:50:54Z) - BaFFLe: Backdoor detection via Feedback-based Federated Learning [3.6895394817068357]
フィードバックに基づくフェデレーション学習(BAFFLE)によるバックドア検出を提案する。
BAFFLEは,最先端のバックドア攻撃を100%,偽陽性率5%以下で確実に検出できることを示す。
論文 参考訳(メタデータ) (2020-11-04T07:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。