Empowering Networks With Scale and Rotation Equivariance Using A
Similarity Convolution
- URL: http://arxiv.org/abs/2303.00326v1
- Date: Wed, 1 Mar 2023 08:43:05 GMT
- Title: Empowering Networks With Scale and Rotation Equivariance Using A
Similarity Convolution
- Authors: Zikai Sun, Thierry Blu
- Abstract summary: We devise a method that endows CNNs with simultaneous equivariance with respect to translation, rotation, and scaling.
Our approach defines a convolution-like operation and ensures equivariance based on our proposed scalable Fourier-Argand representation.
We validate the efficacy of our approach in the image classification task, demonstrating its robustness and the generalization ability to both scaled and rotated inputs.
- Score: 16.853711292804476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The translational equivariant nature of Convolutional Neural Networks (CNNs)
is a reason for its great success in computer vision. However, networks do not
enjoy more general equivariance properties such as rotation or scaling,
ultimately limiting their generalization performance. To address this
limitation, we devise a method that endows CNNs with simultaneous equivariance
with respect to translation, rotation, and scaling. Our approach defines a
convolution-like operation and ensures equivariance based on our proposed
scalable Fourier-Argand representation. The method maintains similar efficiency
as a traditional network and hardly introduces any additional learnable
parameters, since it does not face the computational issue that often occurs in
group-convolution operators. We validate the efficacy of our approach in the
image classification task, demonstrating its robustness and the generalization
ability to both scaled and rotated inputs.
Related papers
- Revisiting Data Augmentation for Rotational Invariance in Convolutional
Neural Networks [0.29127054707887967]
We investigate how best to include rotational invariance in a CNN for image classification.
Our experiments show that networks trained with data augmentation alone can classify rotated images nearly as well as in the normal unrotated case.
arXiv Detail & Related papers (2023-10-12T15:53:24Z) - Convolutions and More as Einsum: A Tensor Network Perspective with Advances for Second-Order Methods [2.8645507575980074]
We simplify convolutions by viewing them as tensor networks (TNs)
TNs allow reasoning about the underlying tensor multiplications by drawing diagrams, manipulating them to perform function transformations like differentiation, and efficiently evaluating them with einsum.
Our TN implementation accelerates KFAC variant up to 4.5x while removing the standard implementation's memory overhead, and enables new hardware-efficient dropouts for approximate backpropagation.
arXiv Detail & Related papers (2023-07-05T13:19:41Z) - Sorted Convolutional Network for Achieving Continuous Rotational
Invariance [56.42518353373004]
We propose a Sorting Convolution (SC) inspired by some hand-crafted features of texture images.
SC achieves continuous rotational invariance without requiring additional learnable parameters or data augmentation.
Our results demonstrate that SC achieves the best performance in the aforementioned tasks.
arXiv Detail & Related papers (2023-05-23T18:37:07Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
This work presents the development of Bessel-convolutional neural networks (B-CNNs)
B-CNNs exploit a particular decomposition based on Bessel functions to modify the key operation between images and filters.
Study is carried out to assess the performances of B-CNNs compared to other methods.
arXiv Detail & Related papers (2023-04-18T18:06:35Z) - Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input.
We propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss.
Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed self-supervised tasks.
arXiv Detail & Related papers (2023-03-08T08:11:26Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - OneDConv: Generalized Convolution For Transform-Invariant Representation [76.15687106423859]
We propose a novel generalized one dimension convolutional operator (OneDConv)
It dynamically transforms the convolution kernels based on the input features in a computationally and parametrically efficient manner.
It improves the robustness and generalization of convolution without sacrificing the performance on common images.
arXiv Detail & Related papers (2022-01-15T07:44:44Z) - Training or Architecture? How to Incorporate Invariance in Neural
Networks [14.162739081163444]
We propose a method for provably invariant network architectures with respect to group actions.
In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network.
We analyze properties of such approaches, extend them to equivariant networks, and demonstrate their advantages in terms of robustness as well as computational efficiency in several numerical examples.
arXiv Detail & Related papers (2021-06-18T10:31:00Z) - Translational Equivariance in Kernelizable Attention [3.236198583140341]
We show how translational equivariance can be implemented in efficient Transformers based on kernelizable attention.
Our experiments highlight that the devised approach significantly improves robustness of Performers to shifts of input images.
arXiv Detail & Related papers (2021-02-15T17:14:15Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.