Sorted Convolutional Network for Achieving Continuous Rotational
Invariance
- URL: http://arxiv.org/abs/2305.14462v1
- Date: Tue, 23 May 2023 18:37:07 GMT
- Title: Sorted Convolutional Network for Achieving Continuous Rotational
Invariance
- Authors: Hanlin Mo and Guoying Zhao
- Abstract summary: We propose a Sorting Convolution (SC) inspired by some hand-crafted features of texture images.
SC achieves continuous rotational invariance without requiring additional learnable parameters or data augmentation.
Our results demonstrate that SC achieves the best performance in the aforementioned tasks.
- Score: 56.42518353373004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The topic of achieving rotational invariance in convolutional neural networks
(CNNs) has gained considerable attention recently, as this invariance is
crucial for many computer vision tasks such as image classification and
matching. In this letter, we propose a Sorting Convolution (SC) inspired by
some hand-crafted features of texture images, which achieves continuous
rotational invariance without requiring additional learnable parameters or data
augmentation. Further, SC can directly replace the conventional convolution
operations in a classic CNN model to achieve its rotational invariance. Based
on MNIST-rot dataset, we first analyze the impact of convolutional kernel
sizes, different sampling and sorting strategies on SC's rotational invariance,
and compare our method with previous rotation-invariant CNN models. Then, we
combine SC with VGG, ResNet and DenseNet, and conduct classification
experiments on popular texture and remote sensing image datasets. Our results
demonstrate that SC achieves the best performance in the aforementioned tasks.
Related papers
- Achieving Rotation Invariance in Convolution Operations: Shifting from Data-Driven to Mechanism-Assured [18.910817148765176]
This paper designs a set of new convolution operations that are natually invariant to arbitrary rotations.
We compare their performance with previous rotation-invariant convolutional neural networks (RI-CNNs)
The results show that RIConvs significantly improve the accuracy of these CNN backbones, especially when the training data is limited.
arXiv Detail & Related papers (2024-04-17T12:21:57Z) - Revisiting Data Augmentation for Rotational Invariance in Convolutional
Neural Networks [0.29127054707887967]
We investigate how best to include rotational invariance in a CNN for image classification.
Our experiments show that networks trained with data augmentation alone can classify rotated images nearly as well as in the normal unrotated case.
arXiv Detail & Related papers (2023-10-12T15:53:24Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
This work presents the development of Bessel-convolutional neural networks (B-CNNs)
B-CNNs exploit a particular decomposition based on Bessel functions to modify the key operation between images and filters.
Study is carried out to assess the performances of B-CNNs compared to other methods.
arXiv Detail & Related papers (2023-04-18T18:06:35Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network [56.42518353373004]
We propose a new convolutional operation, called Rotation-Invariant Coordinate Convolution (RIC-C)
By replacing all standard convolutional layers in a CNN with the corresponding RIC-C, a RIC-CNN can be derived.
It can be observed that RIC-CNN achieves the state-of-the-art classification on the rotated test dataset of MNIST.
arXiv Detail & Related papers (2022-11-21T19:27:02Z) - Equivariance versus Augmentation for Spherical Images [0.7388859384645262]
We analyze the role of rotational equivariance in convolutional neural networks (CNNs) applied to spherical images.
We compare the performance of the group equivariant networks known as S2CNNs and standard non-equivariant CNNs trained with an increasing amount of data augmentation.
arXiv Detail & Related papers (2022-02-08T16:49:30Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.