Few-shots Portrait Generation with Style Enhancement and Identity
Preservation
- URL: http://arxiv.org/abs/2303.00377v1
- Date: Wed, 1 Mar 2023 10:02:12 GMT
- Title: Few-shots Portrait Generation with Style Enhancement and Identity
Preservation
- Authors: Runchuan Zhu, Naye Ji, Youbing Zhao, Fan Zhang
- Abstract summary: StyleIdentityGAN model can ensure the identity and artistry of the generated portrait at the same time.
Style-enhanced module focuses on artistic style features decoupling and transferring to improve the artistry of generated virtual face images.
Experiments demonstrate the superiority of StyleIdentityGAN over state-of-art methods in artistry and identity effects.
- Score: 3.6937810031393123
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays, the wide application of virtual digital human promotes the
comprehensive prosperity and development of digital culture supported by
digital economy. The personalized portrait automatically generated by AI
technology needs both the natural artistic style and human sentiment. In this
paper, we propose a novel StyleIdentityGAN model, which can ensure the identity
and artistry of the generated portrait at the same time. Specifically, the
style-enhanced module focuses on artistic style features decoupling and
transferring to improve the artistry of generated virtual face images.
Meanwhile, the identity-enhanced module preserves the significant features
extracted from the input photo. Furthermore, the proposed method requires a
small number of reference style data. Experiments demonstrate the superiority
of StyleIdentityGAN over state-of-art methods in artistry and identity effects,
with comparisons done qualitatively, quantitatively and through a perceptual
user study. Code has been released on Github3.
Related papers
- Imagine yourself: Tuning-Free Personalized Image Generation [39.63411174712078]
We introduce Imagine yourself, a state-of-the-art model designed for personalized image generation.
It operates as a tuning-free model, enabling all users to leverage a shared framework without individualized adjustments.
Our study demonstrates that Imagine yourself surpasses the state-of-the-art personalization model, exhibiting superior capabilities in identity preservation, visual quality, and text alignment.
arXiv Detail & Related papers (2024-09-20T09:21:49Z) - CreativeSynth: Creative Blending and Synthesis of Visual Arts based on
Multimodal Diffusion [74.44273919041912]
Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images.
However, adapting these models for artistic image editing presents two significant challenges.
We build the innovative unified framework Creative Synth, which is based on a diffusion model with the ability to coordinate multimodal inputs.
arXiv Detail & Related papers (2024-01-25T10:42:09Z) - PortraitBooth: A Versatile Portrait Model for Fast Identity-preserved
Personalization [92.90392834835751]
PortraitBooth is designed for high efficiency, robust identity preservation, and expression-editable text-to-image generation.
PortraitBooth eliminates computational overhead and mitigates identity distortion.
It incorporates emotion-aware cross-attention control for diverse facial expressions in generated images.
arXiv Detail & Related papers (2023-12-11T13:03:29Z) - DemoCaricature: Democratising Caricature Generation with a Rough Sketch [80.90808879991182]
We democratise caricature generation, empowering individuals to craft personalised caricatures with just a photo and a conceptual sketch.
Our objective is to strike a delicate balance between abstraction and identity, while preserving the creativity and subjectivity inherent in a sketch.
arXiv Detail & Related papers (2023-12-07T15:35:42Z) - FaceStudio: Put Your Face Everywhere in Seconds [23.381791316305332]
Identity-preserving image synthesis seeks to maintain a subject's identity while adding a personalized, stylistic touch.
Traditional methods, such as Textual Inversion and DreamBooth, have made strides in custom image creation.
Our research introduces a novel approach to identity-preserving synthesis, with a particular focus on human images.
arXiv Detail & Related papers (2023-12-05T11:02:45Z) - When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for
Personalized Image Generation [60.305112612629465]
Text-to-image diffusion models have excelled in producing diverse, high-quality, and photo-realistic images.
We present a novel use of the extended StyleGAN embedding space $mathcalW_+$ to achieve enhanced identity preservation and disentanglement for diffusion models.
Our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions.
arXiv Detail & Related papers (2023-11-29T09:05:14Z) - Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks [0.0]
Artistic style transfer involves fusing the content of one image with the artistic style of another to create unique visual compositions.
This paper presents a comprehensive overview of a novel technique for style transfer using Convolutional Neural Networks (CNNs)
arXiv Detail & Related papers (2023-10-27T16:21:17Z) - Enhancing the Authenticity of Rendered Portraits with
Identity-Consistent Transfer Learning [30.64677966402945]
We present a novel photo-realistic portrait generation framework that can effectively mitigate the ''uncanny valley'' effect.
Our key idea is to employ transfer learning to learn an identity-consistent mapping from the latent space of rendered portraits to that of real portraits.
arXiv Detail & Related papers (2023-10-06T12:20:40Z) - Face Cartoonisation For Various Poses Using StyleGAN [0.7673339435080445]
This paper presents an innovative approach to achieve face cartoonisation while preserving the original identity and accommodating various poses.
We achieve this by introducing an encoder that captures both pose and identity information from images and generates a corresponding embedding within the StyleGAN latent space.
We show by extensive experimentation how our encoder adapts the StyleGAN output to better preserve identity when the objective is cartoonisation.
arXiv Detail & Related papers (2023-09-26T13:10:25Z) - DreamIdentity: Improved Editability for Efficient Face-identity
Preserved Image Generation [69.16517915592063]
We propose a novel face-identity encoder to learn an accurate representation of human faces.
We also propose self-augmented editability learning to enhance the editability of models.
Our methods can generate identity-preserved images under different scenes at a much faster speed.
arXiv Detail & Related papers (2023-07-01T11:01:17Z) - Quality Metric Guided Portrait Line Drawing Generation from Unpaired
Training Data [88.78171717494688]
We propose a novel method to automatically transform face photos to portrait drawings using unpaired training data.
Our method can (1) learn to generate high quality portrait drawings in multiple styles using a single network and (2) generate portrait drawings in a "new style" unseen in the training data.
arXiv Detail & Related papers (2022-02-08T06:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.